期刊文献+

时变时滞不确定奇异摄动系统的保性能控制 被引量:6

Guaranteed Cost Control for Singularly Perturbed Uncertainty Control Systems with Time-Varying Time-Delay
下载PDF
导出
摘要 为了保持鲁棒稳定且满足一定的性能指标要求,对具有范数有界不确定性参数的不确定时滞奇异摄动控制系统,进行保性能控制分析。利用Lyapunov稳定性理论及矩阵分析方法,设计系统二次性能指标,构造了Lyapunov-Krasovskii泛函,给出了系统鲁棒稳定的充分条件求解定理以及状态反馈保性能控制律,得到了性能指标最小上界,均用线性矩阵不等式形式给出。数值样例表明,该方法对所研究系统保性能控制有效,可推广到多状态滞后以及时变滞后的不确定系统的保性能控制问题。 In order to maintain robust stability while meeting certain problem of guaranteed cost control for time-varyiong time delay singularly performance index requirements, the perturbed systems with norm bounded uncertainty parameters is discussed. Using Lyapunov stability theory and matrix analysis method, based on a new quadratic L-Y performance index, the sufficient quadratic stability conditions, state feedback guaranteed cost control rate and the guaranteed cost index is presented by showed LMIs, and the minimum performance indication upper bound is derived. The method of the dissertation can be extended to multi-state delay uncertain systems guaranteed cost control problems, the numerical examples are employed to elaborate that this method is effective.
作者 孙凤琪
出处 《吉林大学学报(信息科学版)》 CAS 2015年第6期637-643,共7页 Journal of Jilin University(Information Science Edition)
基金 中国高校基本科研基金资助项目(N100406010)
关键词 时滞系统 线性矩阵不等式 LYAPUNOV-KRASOVSKII泛函 时滞依赖 保性能控制率 最优控制 Schur补引理 time-delay system linear matrix inequality (LMI) Lyapunov-Krasovskii functional delay-dependent guaranteed cost control law optimal control Schur complement Lemma
  • 相关文献

参考文献5

二级参考文献35

  • 1[1]Pettersson S, Lennartson B. Stability of hybrid systems using LMIs-a gear-box application[A]. Proc of HSCC′00[C]. Pittsburgh: Springer-Verlag,2000.240-254. 被引量:1
  • 2[2]Boyd S, Ghaoui L El, Feron E, et al. Linear Matrix Inequalities in System and Control Theory[M]. Philadelphia:SIAM,1994. 23-24. 被引量:1
  • 3[3]Pettersson S. Analysis and Design of Hybrid Systems[D]. Swede n:Charmels University of Technology,1999. 被引量:1
  • 4[4]Yi K, Moon I, Kwon Y D. A vehicle-to-vehicle distance control alg orithm for stop-and-go cruise control [A]. Proceedings of IEEE Intelligent T ransportation Systems Conference[C].Oakland:IEEE,2001.478-482. 被引量:1
  • 5MACKEY M, GLASS L. Oscillation and chaos in a physiological control system[J]. Science, 1977,197 : 287-289. 被引量:1
  • 6TIAN Y, GAO F. Adaptive control of chaotic continuous-time systems with delay[J]. Physica D, 1998,117 (1-4) : 1-12. 被引量:1
  • 7KONISHI K, KONIKAME H. Learning control of time-delay chaotic systems and its applications[J]. Int J Bifureat Chaos, 1998,8(12) : 2457-2465. 被引量:1
  • 8KONISHI K, KOKAM H. Control of chaotic systems using an on-line trained linear neural controller[J]. Physica D, 1997, 100 (3-4) :423-438. 被引量:1
  • 9OTT E, GREBOGI C, YORKE J A. Controlling chaos[J]. Phys Rev Lett, 1990,64(11) : 1196-1199. 被引量:1
  • 10CELSO G, LAI Y C, SCOTT H. Control and applications of chaos[J]. Journal of the Franklin Institute, 1997,334 (5-6): 1115-1146. 被引量:1

共引文献12

同被引文献25

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部