期刊文献+

具有Neumann边界的耦合非线性薛定谔方程组能量估计 被引量:5

Energy Estimate for Coupled Nonlinear Schrodinger Equations with Neumann Boundary
下载PDF
导出
摘要 研究了Neumann边界条件下耦合非线性薛定谔方程组的能量估计。首先,运用具体方程组和抽象方程的转换证明了方程组解的存在性。然后,运用迦辽金扰动方法得到了其能量的估计式。 The coupled nonlinear Schrodinger equations with Neumann boundary were considered in order to estimate the energy of the equations. Firstly,the existence of its solution by using the transform between concrete equations and abstract equation was proved. Then the estimated value of energy was got by perturbed Galerkin approximations.
作者 胡妤涵
出处 《河南科技大学学报(自然科学版)》 CAS 北大核心 2016年第1期96-100,10,共5页 Journal of Henan University of Science And Technology:Natural Science
基金 国家自然科学基金项目(11171195)
关键词 非线性薛定谔方程 NEUMANN边界 迦辽金方法 nonlinear Schrodinger equations Neumann boundary Galerkin method
  • 相关文献

参考文献10

  • 1STRAUSS W, BU C. An inhomogeneous boundary value problem for nonlinear SchriSdinger equations [ J ]. Journal of differential equations ,2001 , 173 ( 1 ) :79 - 91. 被引量:1
  • 2TURKER O. Global existence and open loop exponential stabilization of weak solutions for nonlinear Schrtidinger equations with localized external Neumann manipulation[ J]. Nonlinear analysis ,2013,80 (4) : 179 - 193. 被引量:1
  • 3TURKER O. Weakly damped focusing nonlinear Schrtidinger equations with dirichlet control [ J ]. Journal of mathematical analysis and applications ,2012,389 (1) :84- 97. 被引量:1
  • 4TURKER O. Uniform decay rates for the energy of weakly damped defocusing semilinear Schrdinger equations wit inhomogen eous dirichlet boundary control [ J ]. Journal of differential equations, 2011,251 ( 10 ) : 1841 - 1863. 被引量:1
  • 5WU Y, LIU S B. Existence and multiplicity of solutions for asymptotically linear Schrtidinger-Kirchhoff equations [ J ]. Nonlinear analysis : real world applications ,2015:26 ( 12 ) : 191 - 198. 被引量:1
  • 6李伟,张金良.Klein-Gordon-Schrdinger方程组的精确解[J].河南科技大学学报(自然科学版),2014,35(6):84-87. 被引量:3
  • 7LOUIS J, LUO T J, WANG Z Q. Multiple normalized solutions for quasi-linear Schrdinger equations [ J ]. Journal of differential equations,2015,259(10) :3894 "3928. 被引量:1
  • 8许丽萍,张金良.扩展的G'/G展开法与变系数薛定谔方程的精确解[J].河南科技大学学报(自然科学版),2012,33(4):78-81. 被引量:4
  • 9BENJAMIN D. Global Well-posedness and scattering for the mass critical nonlinear Schrdinger equation with mass below the mass of the ground state[ J]. Advances in mathematics,2015,285( 11 ) :1589 -1618. 被引量:1
  • 10GLEISON D N S. Existence and uniqueness of solution for a generalized nonlinear derivative Schrdinger equation [ J ]. Journal of differential equations ,2015,259 ( 5 ) :2030 - 2060. 被引量:1

二级参考文献15

  • 1李向正,张金良,王跃明,王明亮.非线性Schrdinger方程的包络形式解[J].物理学报,2004,53(12):4045-4051. 被引量:29
  • 2LI Xiao-Yan,LI Xiang-Zheng,WANG Ming-Liang.Extended F-Expansion Method and Periodic Wave Solutions for Klein-Gordon-SchrSdinger Equations[J].Communications in Theoretical Physics,2006,45(1):9-14. 被引量:2
  • 3Wang M L,Zhou Y B,Li Z B. Application of a Homogeneous Balance Method to Exact Solutions of Nonlinear Equations in Mathematical Physics [ J]. Phys Lett A, 1996,216 ( 1/5 ) :67 - 75. 被引量:1
  • 4Wang M L,Zhang J L, Li X Z. The(G'/G) Expansion Method and Travelling Wave Solutions of Nonlinear Evolution Equations in Mathematical Physics [ J ]. Phys Lett A,2008,372 ( 4 ) :417 - 423. 被引量:1
  • 5Zhang J,Wei X L, Lu J. A Generalized (G'/G)Expansion Method and Its Applications [ J ]. Phys Lett A,2008,372 (20) :3653 -3658. 被引量:1
  • 6Zhang H Q. New Application of the (G'/G) Expansion Method[ J]. Commun Nonlinear Sci Numer Simulat,2009,14:3220 - 3225. 被引量:1
  • 7Hao R Y,Li L,Li Z H. A New Approach to Exact Soliton Solutions and Soliton Interaction for the Nonlinear Schrdinger Equation with Variable Coefficients[ J]. Opt Commun ,2004,236:79 - 86. 被引量:1
  • 8Zhang J F, Dai C Q, Yang Q. Variable-Coefficient F-expansion Method and Its Application to Nonlinear Schrdinger Equation [ J ]. Opt Commun ,2005,252:408 - 421. 被引量:1
  • 9Lti X,Zhu H W. Soliton Solutions and a Backlund Transformation for a Generalized Nonlinear Schrdinger Equation with Variable Coefficients from Optical Fiber Communications[ J]. J Math Anal Appl,2007 ,336 :1305 -1315. 被引量:1
  • 10李灵晓,李保安.利用推广的(G′/G)-展开法求解Kononpelchenko-Dubrovsky方程[J].河南科技大学学报(自然科学版),2009,30(1):75-77. 被引量:8

共引文献5

同被引文献29

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部