期刊文献+

羧甲基纤维素类粘结剂在硅基锂电池中的应用 被引量:3

Application of the Carboxymethyl Cellulose Binder in Silicon-Based Lithium Batteries
下载PDF
导出
摘要 羧甲基纤维素钠(CMC-Na)与羧甲基纤维素(CMC)都是制作锂电池的常用粘结剂。粘结剂的粘度和分子量通常会对锂电池的电化学性能产生很大的影响。基于纳米的硅作为锂电池优异的负极材料,针对CMC-Na和CMC进行了系统的力学、电化学性能分析。研究表明,CMC-Na具有优异的机械性能,当CMC-Na用作粘结剂时,锂电池表现出高的比容量,但在充/放电过程中比容量衰减过快。CMC具有比较紧密的网络结构,使硅颗粒在循环过程中产生较小的体积膨胀,因此当CMC作为粘结剂时,锂电池展示出极佳的循环稳定性,但CMC与硅的弱的粘着力限制了电极的比容量。这为羧甲基纤维素类粘结剂的开发与应用研究提供了方向。 The sodium carboxymethyl cellulose(CMC-Na)and carboxymethyl cellulose(CMC)are commonly used as the binders for lithium batteries.The viscosity and molecular weight of the binder usually have great effect on the electrochemical performance of lithium batteries.Based on nano-silicon as an excellent anode material for lithium batteries,the systematic mechanical and electrochemical performance analyses for CMC-Na and CMC were made.The research shows that CMC-Na has excellent mechanical properties.When CMC-Na is used as the binder,lithium batteries exhibit high specific capacity,but the specific capacity is attenuated too fast during charging/discharging.CMC has a relatively tight network structure,which makes the silicon particles endure small volume expansion during the cyclic process,therefore the lithium battery exhibits excellent cycle stability when CMC is used as the binder.However,the weak adhesion between CMC and silicon limits the specific capacity of the electrode.The research provides a direction for the development and application of carboxymethyl cellulose binders.
作者 石永吉 王晓钰 张瑜 魏良明 Shi Yongji;Wang Xiaoyu;Zhang Yu;Wei Liangming(School of Electronic Information and Electrical Engineering,Shanghai Jiaotong University,Shanghai 200240,China)
出处 《微纳电子技术》 北大核心 2019年第4期269-273,318,共6页 Micronanoelectronic Technology
基金 国家自然科学基金资助项目(51272155)
关键词 锂电池 粘结剂 负极材料 循环性能 lithium battery binder Si anode material cycle performance
  • 相关文献

参考文献2

二级参考文献26

  • 1Obrovac, M. N.; Christensen, L. Structural changes in silicon anodes during lithium insertion/extraction. Electrochim. Solid-State Lett. 2004, 7, A93-A96. 被引量:1
  • 2Zhou, S.; Liu, X. H.; Liu, Wang, D. W. Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries. Nano Lett. 2010, 10, 860-863. 被引量:1
  • 3Peng, K. Q.; Jie, J. S.; Zhang, W. J.; Lee, S. T. Silicon nanowires for rechargeable lithium-ion battery anodes. Appl Phys. Lett. 2008, 93, 033105. 被引量:1
  • 4Chart, C. K.; Patel, R. N.; O'Connell, M. J.; Korgel, B. A.; Cui, Y. Solution-grown silicon nanowires for lithium-ion battery anodes. ACSNano 2010, 4, 1443-1450. 被引量:1
  • 5Chan, C. K.; Peng, H. L.; Liu G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31-35. 被引量:1
  • 6Park, M.-H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Silicon nanotube battery anodes. Nano Lett. 2009, 9, 3844-3847. 被引量:1
  • 7Song, T.; Xia, J. L.; Lee, J.-H.; Lee, D. H.; Kwon, M.-S.; Choi, J.-M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W.; et al. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 2010, 10, 1710-1716. 被引量:1
  • 8Qu, Y. Q.; Liao, L.; Li, Y. J.; Zhang, H.; Huang, Y., Duan, X. F. Electrically conductive and optically active porous silicon nanowires. Nano Lett. 2009, 9, 4539-4543. 被引量:1
  • 9Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A., Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353-358. 被引量:1
  • 10Kim, H.; Hart, B.; Choo, J.; Cho, J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed. 2008, 47, 10151- 10154. 被引量:1

共引文献33

同被引文献25

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部