摘要
为有效消除叠层件之间由于制造误差、定位误差、钻削力等因素产生的初始间隙和制孔间隙,提出预联接工艺优化方法,预联接件的紧固作用可有效消除叠层间隙,抑制毛刺生长.通过建立蒙皮和边梁之间的预联接有限元简化模型,在不考虑压紧力的情况下,研究不同预联接件数量、安装位置以及预紧力条件下的叠层残余间隙和制孔间隙,给出最优预联接工艺方案,通过机器人自动化制孔系统进行实验,验证了该优化方案的正确性和有效性.实验结果表明,随着预紧力的增大,叠层毛刺尺寸先明显减小后小幅增大,较优的预联接件数量和安装位置可优化叠层件的接触刚度,有效减小毛刺尺寸.
A pre-connected process optimization method was proposed in order to effectively eliminate the initial gap and drilling gap between the stacks due to manufacturing errors, positioning errors, drilling force and other factors in the assembly processes of aircraft parts. The tightening effect of pre-connectors can effectively eliminate the stacked gap and inhibit the formation of burrs. A simplified pre-connection fi- nite element model was established without the considering of the pressing force. And the residual gap and drilling gap under the conditions of different pre-connector's quantity, installation location and pre-load were studied, then the optimal pre-connection scheme was obtained. Finally, each scheme was compared and verified by robot automatic drilling experiments. Experimental results show that the interlayer burr size is significantly reduced with the increasing of the preload before it is slightly increased. Better pre- connector's quantity and installation location can optimize the contact stiffness of the stacks so that the in- terlayer burr size can be effectively reduced.
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2015年第11期2040-2046,共7页
Journal of Zhejiang University:Engineering Science
基金
国家自然科学基金资助项目(51275463
51205352)