期刊文献+

关于有理群

About Rational Groups
下载PDF
导出
摘要 设G是有限群,并设χ是G的一个(复)特征标.如果χ的值是有理数,则称χ是有理值的.如果G的每个不可约特征标都是有理值的,则称G是有理群.主要目的是对若干有理群进行分类.此外,给出一个应用例子,并对关于有理群的一个已知结果给出纯群论的内在刻划. A finite group G is called a rational group, if every character of G is rationally-valued. In this paper, we classify some rational groups. In addition, we give an example of application, and a group-theory proof for a known result about rational groups.
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2015年第6期856-860,共5页 Journal of Sichuan Normal University(Natural Science)
基金 新疆维吾尔自治区普通高等学校重点学科基金(2012ZDXK12)
关键词 有限群 二性群 有理群 特征标 共轭 分类 finite group ambivalent group rational group character conjugation classify
  • 相关文献

参考文献11

  • 1Isaacs I M. Character Theory of Finite Groups[ M ]. Providence:AMS,2006. 被引量:1
  • 2钱国华,游兴中,施武杰.中心外的同阶元必共轭的有限群[J].中国科学(A辑),2007,37(10):1160-1166. 被引量:4
  • 3Felt W, Seitz G. On finite rational groups and related topies[J]. Illinois J Mathematics,1988,33(1 ) :103 -131. 被引量:1
  • 4Markel F M. Groups with many conjugate elements[J]. J Algebra,1973 26:69 -74. 被引量:1
  • 5Ward W B. Finite groups in which no two distinct conjugacy classes have the same order[J]. Arch Math, 1990,54:111 -116. 被引量:1
  • 6Rose H E. A Course on Finite Groups[ M]. London:Springer-Verlag,2009. 被引量:1
  • 7Kletzing D. Structure and representations of Q -groups[ C ]//Lecture Notes Math, 1084. New York:Springer- Verlag, 1984. 被引量:1
  • 8Huppet B. Endlich GruppenI [ M ]. New York : Springer - Verlag, 1967. 被引量:1
  • 9郭继东,任永才,张志让.某些有理群的结构[J].四川师范大学学报(自然科学版),2015,38(3):381-385. 被引量:1
  • 10Gorenstein D. Finite Groups [ M ]. London, New York : Harper and Row, 1968. 被引量:1

二级参考文献38

  • 1Feit W, Seitz G M. On finite rational groups and related topics. Illinois J Math, 33:103-131 (1988) 被引量:1
  • 2张继平.关于有限群的Syskin问题[J].中国科学:A辑:数学,1988,2:124-128. 被引量:1
  • 3Gow R. Groups whose characters are rationally-valued. J Algebra, 40:280-299 (1976) 被引量:1
  • 4Brandl R, Shi W J. Finite groups whose element orders are consecutive integers. J Algebra, 143:388-400 (1991) 被引量:1
  • 5Feit W. The Representation Theory of Finite Groups. Amsterdam-New York-Oxford: North-Holland Publishing Company, 1982 被引量:1
  • 6Huppert B. Endlich Gruppen I. Berlin: Springer-Verlag, 1979 被引量:1
  • 7Conway J H, Curtis R T, Norton S P, et al. Atlas of Finite Groups. Oxford: Clarendon Press, 1985. 1-88 被引量:1
  • 8Isaacs I M. Character Theory of Finite Groups. New York: Academic Press, 1976 被引量:1
  • 9Huppert B. Character Theory of Finite Groups. Berlin-New York: Walter de Gruyter, 1998 被引量:1
  • 10钱国华,游兴中,施武杰.中心外的同阶元必共轭的有限群[J].中国科学(A辑),2007,37(10):1160-1166. 被引量:4

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部