期刊文献+

毕达哥拉斯正交齐次方向的几点注记

Remarks on the Homogeneous Direction of Pythagorean Orthogonality
下载PDF
导出
摘要 鉴于赋范空间L2-可和向量一定是毕达哥拉斯正交的齐次方向,但没有讨论反向的蕴含关系是否成立.通过研究毕达哥拉斯正交齐次方向和L2-可和向量的几何特征,从而证明了毕达哥拉斯正交的齐次方向一定是L2-可和向量.因此,一个单位向量是L2-可和向量当且仅当它是毕达哥拉斯正交的一个齐次方向.此外,还给出L2-可和向量和等距反射向量之间的关系. It is proved that an L2-summand vector is necessarily a homogeneous direction of Pythagorean or- thogonality in normed linear spaces, but there is no discussion of whether the implication of the reverse is estab- lished. In view of this, we study the geometric properties of a homogeneous direction of Pythagorean orthogonality and an L2-summand vector. It is shown that a homogeneous direction of Pythagorean orthogonality is an L2-summand vector. Therefore, a unit vector is an L2-summand if and only if it is a homogeneous direction of Pythagorean or- thogonality. In addition, we study the relation between L2-summand vectors and isometric reflection vectors.
作者 刘庚 刘畅
出处 《哈尔滨理工大学学报》 CAS 北大核心 2015年第5期108-110,共3页 Journal of Harbin University of Science and Technology
基金 国家自然科学基金(11371114 11171082)
关键词 毕达哥拉斯正交 L2-可和向量 齐次方向 Pythagorean orthogonality L2-summand vector homogeneous direction
  • 相关文献

参考文献11

  • 1吴森林,郭伟.毕达哥拉斯正交的齐次方向和相关不等式[J].哈尔滨理工大学学报,2013,18(5):115-118. 被引量:3
  • 2ALONSO J, MARTINI H,WU SENLIN. On Birkhoff Orthogonali-ty and Isosceles Orthogo-nality in Normed Linear Spaces [ J ].Aequat. Math,2012,83 : 153 -189. 被引量:1
  • 3JAMES R C. Orthogonality in normed Linear Spaces[ J]. DukeMath J, 1945,12:291 -302. 被引量:1
  • 4吴森林,计东海.正交性和内积空间的一些特征[J].哈尔滨理工大学学报,2004,9(6):113-115. 被引量:10
  • 5AIZPURU A,GARC A-PACHECO F J. L2-summand Vectors inBanach Spaces[ J]. Proc. Amer. Math. Soc,2006,134 (7 ) :2109-2135. 被引量:1
  • 6STORIK A, ZAIDENBERG M. On Isometrc Reflections in BanachSpace [ J ]. Math. Physics, Geometry, 1997 ,4 : 212 -247. 被引量:1
  • 7HE Chan,MARTINI H, WU Senlin. On Bisectors For Convex Dis-tance Function [ C ] //Proceeding of 2011 Eighth International Sym-posium on Voronoi Diagrams in Science and Engineering,2011;23 -30. 被引量:1
  • 8HAO C,WU S. Homogeneity of Isosceles Orthogonality and Relat-ed Inequalities [ J ]. Journal of Inequalities and Applications,2011,2011:84-87. 被引量:1
  • 9GARCIA-PACHECO F J. Geometry of Isometric Reflection Vectors[J]. 2011,61(5):807 -816. 被引量:1
  • 10BECERRA GUERRERO J. RODRIGUEZ PALACIOS A, Isomet-ric Reflections on Banach spaces After a Paper of A. Skorik andM. Zaidenberg [ J ]. Rocky Mountain Journal of Mathematics.2000,30(1);63 -83. 被引量:1

二级参考文献18

  • 1吴森林,计东海.正交性和内积空间的一些特征[J].哈尔滨理工大学学报,2004,9(6):113-115. 被引量:10
  • 2BIRKHOFF G. Orthogonality in Normed Metric Spaces[J]. Duke Math.J, 1935, 1: 169-172. 被引量:1
  • 3ROBERTS B D. On the Geometry of Abstract Vector Spaces[J].T6hoku Mathematical Journal, 1934, 39: 42-59. 被引量:1
  • 4JAMES R C. Orthogonality in Normed Linear Spaces[J]. Duke. Math J., 1945, 12: 291-301. 被引量:1
  • 5JAMES R C. Orthogonality and Linear Functionals in Normed Linear Spaces[J].Trans. Amer. Soc., 1947, 61: 265-292. 被引量:1
  • 6XU Hong-kun, KIM Tae-Hwa. Some Hilbert Space Characterizations and Banach Space Inequalities[J]. Mathematical Inequalities and Applications, 1998, 1(1): 113-121. 被引量:1
  • 7ALONSO Javier. Uniquess Properties of Isosceles Orthogonality in Normed Linear Spaces[J]. Ann. Sci.Math. Quebec, 1994,18(1):25-38. 被引量:1
  • 8DAY M M. Some Characterizations of Inner Product Spaces[J]. Trans. Amer. Math. Soc., 1947, 62: 320-337. 被引量:1
  • 9JAMES R C.Orthogonality in Normed Linear Spaces[J].Duke Math J,1945,12:291-302. 被引量:1
  • 10ROBERTS B D.On the Geometry of Abstract Vector Spaces[J].T(O)hoku Mathematical Journal,1934,39:42-59. 被引量:1

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部