期刊文献+

基于稀疏表示的鲁棒性说话人识别系统

Robust Speaker Recognition System Based on Sparse Representation
下载PDF
导出
摘要 基于稀疏表示的说话人识别方法在无噪的环境下已经达到了理想的效果,然而在背景噪声下,此方法的识别性能大幅度下降。为了提高系统的鲁棒性,提出了一种新型的基于稀疏表示的鲁棒性说话人识别系统模型。此系统结合多状态训练和语音增强谱减法,在训练阶段和测试阶段同时利用语音增强技术,然后对增强后的语音进行多状态训练,以便提高训练特征数据集和测试特征数据集之间的匹配度。实验分析和结果表明,所提出的新型模型在所研究的白噪声和有色噪声下达到了很好的抗噪性能,具有很强的鲁棒性。 Robust speaker recognition method based on sparse representation in the absence of noise has reached ideal performance. However, speaker recognition based on sparse representation doesn' t perform well where background noise exists. To improve the robustness of this system,describe a new robust speaker recognition system based on sparse representation. The system combines multi-condition training and spectrum subtraction,which is thought to be a preprocessing block not only for the testing stage, but also for the training stage. Then propose to make multi-condition training where various sets of features are extracted, so as to improve the matched degree be- tween training data and testing data. Experimental analysis and results show that the proposed new model under white and colored noises can get the great anti -noise performance, and obviously improve the robustness of the speaker recognition under background noisy envi- ronments.
作者 于云 周伟栋
出处 《计算机技术与发展》 2015年第12期41-46,共6页 Computer Technology and Development
基金 国家自然科学基金资助项目(61271335) 国家"973"重点基础研究发展计划项目(2011CB302303) 江苏省自然科学基金项目(BK20140891)
关键词 说话人识别 稀疏表示 多状态训练 谱减法 speaker recognition sparse representation multi-condition training spectrum subtraction
  • 相关文献

参考文献15

  • 1何勇军,孙广路,付茂国,韩纪庆.基于稀疏编码的鲁棒说话人识别[J].数据采集与处理,2014,29(2):198-203. 被引量:3
  • 2Ortega-Garcia J, Gonzalez-Rodriguez L. Overview of speaker enhancement techniques for automatic speaker recognition [ C ]//Proc of ICSLP ' 96. Philadephia : [ s. n. ], 1996 : 929 - 932. 被引量:1
  • 3Teunen R, Shahshahani B, Heck L P. A model-based transfor- mational approach to robust speaker recognition [ C ]//Proc of ICSLP' 00. Beijing, China : [ s. n. ] ,2000:495-498. 被引量:1
  • 4Ji Ming, Hazen T J, Glass J R, et al. Robust speaker recogni- tion in noisy conditions [ J ]. IEEE Trans on Audio, Speech, and Language Processing,2007,15 (5) : 1711 - 1723. 被引量:1
  • 5Ji Ming, Stewaryt D, Vaseghi S. Speaker identification in un- known noisy conditions- a universal compensation approach [C ]//Proc of ICASSP. Philadelphia: [ s. n. ], 2005:617- 620. 被引量:1
  • 6Kim K,Kim M Y. Robust speaker recognition against back- ground noise in an enhanced multi- condition domain [ J ]. IEEE Trans on Consumer Electron, 2010,56 ( 3 ) : 1684-1688. 被引量:1
  • 7Wright J, Yang A Y. Robust face recognition via sparse repre- sentation[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence ,2009,31 ( 2 ) :210-227. 被引量:1
  • 8Imran N, Roberto T, Mohammed B. Sparse representation for speaker identification [ C ]//Proc of ICRP. Istanbul, Turkey: [ s. n. ] ,2010:4460-4463. 被引量:1
  • 9Xu L T, Yang Z. Speaker identification based on sparse sub- space model[ C]//Proe of Asia-Pacific conference on com- munications. Bali, Indonesia : [ s. n. ] ,2013:37-41. 被引量:1
  • 10Saon G, Padmanabhan M, Gopinath R. Maximum likelihood diseriminant feature spaces [ C ]// Proe of ICASSP. [ s. 1. ] : [s.n. ], 2000:1129-1132. 被引量:1

二级参考文献110

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2张庆芳,赵鹤鸣.基于改进VQ算法的文本无关的说话人识别[J].计算机工程与应用,2006,42(10):65-68. 被引量:7
  • 3R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121. 被引量:1
  • 4Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383. 被引量:1
  • 5Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998. 被引量:1
  • 6E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999. 被引量:1
  • 7E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664. 被引量:1
  • 8Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501. 被引量:1
  • 9G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91. 被引量:1
  • 10V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09. 被引量:1

共引文献714

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部