摘要
采用特征值屈曲的有限元法,在两端固支和铰支约束条件下,对底部受自重及轴向压力的直井管柱进行了临界失稳长度分析。分析结果表明:两端固支和铰支的约束条件对管柱临界失稳长度的影响较大,工程中应取接近于固支的临界失稳长度;底部轴向压力与临界失稳长度呈非线性递减关系。对底部轴向压力和临界失稳长度进行了无量纲化,可用于中和点以下不同管柱尺寸和底部轴向压力的临界失稳长度计算。
It defines the finite element method to assumption of the same deflection curve function of the conventional energy method, uses analyze the critical buckling length of the vertical pipe string. Under the constraint con- ditions of both ends hinged or fixed, conditions have great influence on the critical buckling length of pipe string. Buckling length should be close to the buckling length of fixed constraint in engineering practice. The relation- ship between the axial compression load and critical length is non -linear degressive. It obtains the dimension- less of the axial compression load and the critical length, and calculates the critical buckling length below the neutral point with different sizes of pipe string and different bottom axial pressure.
出处
《机械设计与制造工程》
2015年第10期36-38,共3页
Machine Design and Manufacturing Engineering
基金
黑龙江省教育厅科学技术研究项目(12531055)
关键词
管柱
临界失稳长度
特征值屈曲
有限元
pipe string
critical buckling length
eigenvalue buckling
finite element