期刊文献+

面向旅行商问题的蚁群算法改进 被引量:22

Improved ant colony algorithm for travelling salesman problem
下载PDF
导出
摘要 针对基本蚁群算法在处理旅行商问题(TSP)时会出现收敛速度慢且容易陷入局部最优解的缺陷,从城市选择策略和信息素挥发系数进行了改进,提出了一种基于赌盘算法的城市选择策略和挥发系数自适应的蚁群算法,并采用了任务提前终止策略来减少算法的运行时间。仿真结果表明,该算法与基本蚁群算法相比,收敛时间比基本蚁群算法运行时间缩短了60%~80%,改进后的算法最优解绝大部分优于基本蚁群算法,也有少部分不如基本蚁群算法,但都在可接受范围以内。 The basic Ant Colony Algorithm( ACA) has some problems when processing Traveling Salesman Problems( TSP),such as slow convergence speed and easy to fall into local optimum. In order to solve these problems,this paper improved the city selection strategy based on roulette wheel algorithm and proposed an improved ant algorithm based on adaptive volatile coefficient. The run-time was reduced by using the strategy early to terminate the task. The simulations reveal that the proposed algorithm has some advantages compared to basic ACA. Its run-time is 60% to 80% less than basic ACA,and the most of optimization of improved algorithm is superior to that of basic ACA. Of course,it also have some problems inferior to basic ACA but within acceptable range.
出处 《计算机应用》 CSCD 北大核心 2015年第A02期114-117,共4页 journal of Computer Applications
关键词 蚁群算法 动态自适应 赌盘算法 TSP Ant Colony Algorithm(ACA) dynamic adaptive roulette wheel algorithm Travelling Salesman Problem(TSP)
  • 相关文献

参考文献12

  • 1DOERGO M, GAMBARDELLA L M. Ant colonies for the traveling salesman problem [ J]. Bio-Systems, 1997, 43(2) : 73 - 81. 被引量:1
  • 2MURRAY A T, CHURCH R L. Applying simulated annealing to location- planning models[ J]. Journal of Heuristics, 1996,2(1) : 31 - 53. 被引量:1
  • 3丁建立,陈增强,袁著祉.遗传算法与蚂蚁算法的融合[J].计算机研究与发展,2003,40(9):1351-1356. 被引量:287
  • 4ROLLAND E, SCHILLING D A, CURRENT J R. An efficient tabu search procedure for p-Median problem[ J]. European Journal of Op- erational Research, 1996, 96(2) : 329 - 342. 被引量:1
  • 5GLOVER F. Tabu search: part Ⅰ [ J] . ORSA Journal on Computing, 1989, 1(3) : 190 -206. 被引量:1
  • 6熊桢,郑兰芬,童庆禧.分层神经网络分类算法[J].测绘学报,2000,29(3):229-234. 被引量:20
  • 7RANDALL M. A parallel implementation of ant colony optimization [ J]. Journal of Parallel and Distributed Computing, 2002, 62 (9) : 1421 - 1432. 被引量:1
  • 8孙学刚,贠超,崔一辉.改进免疫算法在函数优化中的应用[J].北京航空航天大学学报,2010,36(10):1180-1183. 被引量:5
  • 9DORIGO M, MANIEZZO V, COLORNI A. The ant system: optimi- zation by a colony of cooperating Agents[ J]. IEEE Transactions on Systems, Man and Cybernetics, 1996, 26(1) : 23 -31. 被引量:1
  • 10DOERGO M, MANIEZZO V, COLORNT A. The ant system: opti- mization by a colony of eoorperating Agents[ J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 1996: 26(1) : 29 -41. 被引量:1

二级参考文献20

  • 1Marco Dorigo, Gambardella, Luca Maria. Ant colonies for the traveling salesman problem. Biosystems, 1997, 43(2): 73~81. 被引量:1
  • 2Marco Dorigo, Gambardelh, Luca Maria. Ant colony system: A cooperative learning approach to the traveling salesaum problem. IEEE Trans on Evolutionary Computation, 1997, 1(1) : 53~66. 被引量:1
  • 3Marco Dorigo, Eric Bonabeau, Theranlaz Guy. Ant algorithms and stigmergy. Future Generation Computer System, 2000, 16(8) : 851~871. 被引量:1
  • 4Thomas Stutzle, Holger H Hoos et al. MAX-MIN ant system. Future Generation Computer System, 2000, 16(8) : 889~914. 被引量:1
  • 5Marcus Randall, Andrew Lewis. A parallel implementation of ant colony optimization. Journal of Parallel and Distributed Computing, 2002, 62(9): 1421~1432. 被引量:1
  • 6Tu Teming,IEEE Transactions Geoscience Remote Sensing,1998年,36卷,1期,129页 被引量:1
  • 7黄凤岗,模式识别,1998年,30页 被引量:1
  • 8Castro de L N,Zuben von F J.Artificial immune system.Part I-Basic Theory and Application. http://www.dca.fee.unicamp.br/Inunes/immunes.html . 1999 被引量:1
  • 9Castro de P A,Zuben von F J.An immune-inspired approach toBayesian networks. Proceedings of the Fifth InternationalConference on Hybrid Intelligent Systems (HIS 05) . 2005 被引量:1
  • 10Franca de F O,Zuben von F J,Castro de L N.An artificial im-mune network for multimodal optimization on dynamic environ-ments. Proceedings of the Genetic and Evolutionary Com-putation Conference (GECCO’05) . 2005 被引量:1

共引文献309

同被引文献211

引证文献22

二级引证文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部