期刊文献+

细菌觅食优化算法的边界条件 被引量:1

Boundary conditions of bacterial foraging optimization algorithm
下载PDF
导出
摘要 细菌觅食优化算法在搜索全局最优的过程中,可能出现细菌超出搜索空间的情况。针对这种现象,提出了7种受限制的边界条件和4种不受限制的边界条件,对出界细菌进行处理。通过单峰值函数和多峰值函数分别对这11种边界条件进行对比测试。结果表明,就收敛速度来看,不受限制的边界条件总体性能优于受限制的边界条件,而置于边缘的受限制的边界条件又稍微优于随机放置的情况。就搜索效果来看,对于单峰值函数,无形/衰减这种边界条件在寻优效果方面优于其他的边界条件,而且比较稳定,仅次于无形/衰减这种边界条件的是随机/吸收边界条件;对于多峰值函数,衰减边界条件更具优势。 In the process of searching global optimization,bacterial foraging optimization algorithm may be beyond the search space. In view of the phenomenon,seven restricted boundary conditions and four unlimited boundary conditions were proposed to deal with the outside bacterias. The eleven kinds of boundary conditions are separately compared by single peak functions and multimodal functions. The results indicate that on the convergence rate,the unlimited boundary conditions are superior to the restricted boundary conditions in the overall performance,and the conditions of placing particles on the edge of the restricted boundary are slightly better than those of placing particles randomly. On the search effectiveness,for single peak functions,the invisible / attenuation boundary condition is superior to the other boundary conditions in the effect of searching optimum,and the random / absorbing boundary condition is next to it. For multimodal functions,the attenuation boundary condition shows advantages.
作者 孟洋 田雨波
出处 《计算机应用》 CSCD 北大核心 2015年第A02期111-113,154,共4页 journal of Computer Applications
关键词 细菌觅食优化算法 智能优化 边界条件 收敛 寻优效果 Bacterial Foraging Optimization(BFO) algorithm intelligent optimization boundary condition convergence effect of searching optimum
  • 相关文献

参考文献9

  • 1PASSINO K M. Biomimicry of bacterial foraging for distributed opti- mization and control[ J]. IEEE Control Systems, 2002, 22( 3): 52 - 67. 被引量:1
  • 2ROBINSON J, RAHMAT-SAMII Y, Particle swarm optimization in electromagnetics[ J]. IEEE Transactions on Antennas and Propaga- tion, 2004, 52(2): 397-407. 被引量:1
  • 3XU S, RAHMAT-SAMII Y. Boundary conditions in particle swarm optimization revisited[ J]. IEEE Transactions on Antennas and Prop- agation, 2007, 55(3): 760-765. 被引量:1
  • 4LI H, HE X, XIE X, et al. A new boundary condition for particle swarm optimization[ J]. Journal of Convergence Information Technol- ogy, 2010,5(9): 215-221. 被引量:1
  • 5MIKKI S M, KISHK A A. Hybrid periodic boundary condition for particle swarm optimization[ J]. IEEE Transacitons on Antennas and Propagation, 2007, 55 (11) : 3251 - 3256. 被引量:1
  • 6LI J, REN B, WANG C. A random velocity boundary condition for robust particle swarm optimization[ C]//LSMS 2007: Proceedings of the 2007 International Conference on Life System Modeling and Sim- ulaiton, LNCS4688. Berlin: Springer, 2007:92-99. 被引量:1
  • 7HUANG T, MOHAN A S. A hybrid boundary condition for robust particle swarm optimization[ J]. IEEE Antennas and Wireless Propa- gation Letters, 2005, 4:112-117. 被引量:1
  • 8MIKKI S M, KISHK A A. Improve particle swarm optimization tech- nique using hard boundary conditions[ J]. Microwave and Optical Technology Letters, 2005,46(5): 422-426. 被引量:1
  • 9李金金,田雨波.粒子群优化算法边界条件研究[J].计算机工程,2011,37(24):173-175. 被引量:3

二级参考文献7

  • 1Kennedy J, Eberhart R C. Particle Swarm Optimization[C] //Proc. of IEEE International Conference on Neural Networks. Piscataway, USA: IEEE Service Center, 1995: 1942-1948. 被引量:1
  • 2Robinson J, Rahmat-Samii Y. Particle Swarm Optimization in Electromagnetics[J]. IEEE Trans. on Antennas Propagation, 2004, 52(2): 397-407. 被引量:1
  • 3Xu Shenheng, Rahmat-Samii Y. Boundary Conditions in Particle Swarm Optimization Revisited[J]. IEEE Trans. on Antennas and Propagation, 2007, 55(3): 760-765. 被引量:1
  • 4Shi Yuhui, Eberhart R C. A Modified Swarm Optimizer[C] //Proc. of IEEE International Conference on Evolutionary Computation. Anchorage, USA: IEEE Press, 1998: 69-73. 被引量:1
  • 5Eberhart R C, Shi Yuhui. Particle Swarm Optimization: Developments, Applications, and Resources[C] //Proc. of IEEE International Conference on Evolutionary Computation. [S. l.] : IEEE Press, 2001: 81-86. 被引量:1
  • 6倪庆剑,张志政,王蓁蓁,邢汉承.一种基于可变多簇结构的动态概率粒子群优化算法[J].软件学报,2009,20(2):339-349. 被引量:36
  • 7李睿,李伟娟,李明.基于加权量子粒子群的分类器设计[J].计算机工程,2010,36(7):203-204. 被引量:2

共引文献2

同被引文献14

  • 1张荣沂.一种新的集群优化方法——粒子群优化算法[J].黑龙江工程学院学报,2004,18(4):34-36. 被引量:18
  • 2LIU Y,PASSINO K M, POLYCARPOU M M.Sta- bility analysis of m-dimensional asynchronous swarms with a fixed communication topology[J].Automatic Control, IEEE Transactions on, 2003,48(1):76-95. 被引量:1
  • 3DATTA T, MISRA I S,MANGARAJ B B, et al. Improved adaptive bacteria foraging algorithm in opti- mization of antenna array for faster convergence[J]. Progress In Electromagnetics Research C,2008,1:143-157. 被引量:1
  • 4CHEN H,ZHU Y, HU K.Self-adaptation in bacteri- al foraging optimization algorithm[C]//Intelligent System and Knowledge Engineering, 2008.ISKE 2008.3rd International Conference on.IEEE, 2008,1:1026-1031. 被引量:1
  • 5KIM D H,ABRAHAM A,CHO J H.A hybrid ge- netic algorithm and bacterial foraging approach for global optimization[J].Information Sciences, 2007,177(18):3918-3937. 被引量:1
  • 6KIM D H, CHO J H.A biologically inspired intelli- gent PID controller tuning for AVR systems[J].In- ternational Journal of Control Automation and Sys- tems, 2006,4(5):624-636. 被引量:1
  • 7CHATTERJEE A, MATSUNO F_ Bacterial foraging techniques for solving EKFBased SLAM problems[C]//Proc.Int.Control Conf.2006. 被引量:1
  • 8TANG WJ, WUQ H,SAUNDERS J R.A bacterial swarming algorithm for global optimization[C]//Evo- lutionary Computation, 2007.CEC 2007.IEEE Con- gress on.IEEE,2007:1207-1212. 被引量:1
  • 9周雅兰.细菌觅食优化算法的研究与应用[J].计算机工程与应用,2010,46(20):16-21. 被引量:74
  • 10刘小龙,赵奎领.基于免疫算法的细菌觅食优化算法[J].计算机应用,2012,32(3):634-637. 被引量:20

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部