期刊文献+

自复位率对可控摇摆自复位钢框架抗震性能的影响

The influence of self-centering ratio on seismic performance of controlled-rocking steel frames
下载PDF
导出
摘要 耗能器和预拉力钢绞线的协同工作性能,是可控摇摆自复位结构的抗震设计主要考虑因素。通过理论分析该结构工作性能提出基于位移的性能化设计方法。在利用已有试验结果验证有限元方法的可行性后,采用Open Sees有限元软件对一个三层自复位结构进行了3组27个试件的时程分析,研究参数自复位率对结构抗震性能的影响。模拟分析结果表明:自复位率的增大能有效减小残余变形,但对峰值变形起放大作用,而这种放大作用与钢板耗能器的强度有关,因此需要将自复位率作为控制指标;将自复位率控制在0.625附近,能有效限制结构的震后残余位移,并使结构的层间侧移角峰值不致过大。 Coordination of the energy consumer and pre-tensioning stranded fuse plays an important role in the seismic design of the controlled-rocking self-centering steel frame. Based on the theoretical analysis of the seis-mic performance of the structure, a displacement-based design is introduced. The open-source software Open Sees is used to conduct the nonlinear time-history analysis of 27 specimens of 3 groups in a 3-layer selfcentering structure after the validation of the result of the experiment, which is used to study the impact of the parameter self-centering ratio on the seismic performance. The results indicate that the increase in the self-cen-tering ratio can significantly reduce the residual uplift ratio, but has an amplification effect on the peak displace-ment under the designed earthquake. The amplification has some relation to the rigidity of the energy consumer,so the self-centering ratio should be taken as a control index. What's more, the control of the self-centering ratio around 0.625 will effectively limit the residual deformation below the limit value from the standard after the earthquake, and ensure that the peak value of uplift ratio is not too large.
出处 《苏州科技学院学报(工程技术版)》 CAS 2015年第4期30-36,共7页 Journal of Suzhou University of Science and Technology (Engineering and Technology)
基金 国家自然科学基金项目(51378326) 江苏省结构工程重点实验室开放课题(ZD1204)
关键词 可控摇摆自复位钢框架 性能化设计 柱脚抬升 自复位率 self-centering steel frame with controlled rocking uplift ratio of the column base self-centering ratios
  • 相关文献

参考文献11

  • 1周颖,吕西林.摇摆结构及自复位结构研究综述[J].建筑结构学报,2011,32(9):1-10. 被引量:221
  • 2Eatherton M R, Ma X,Krawinkler H, et al. Design concepts for controlled rocking of self-centering steel-braced frames [J]. Journal of StructuralEngineering, 2014, 140(11) : 1-10. 被引量:1
  • 3Ma X. Seismic Design and Behavior of Self-Centering Braced Frame with Controlled Rocking and Energy-Dissipating Fuses [M]. Stanford Univer-sity, USA, 2010. 被引量:1
  • 4Zhu S, Zhang Y. Performance based seismic design of steel braced frame system with self-centering friction damping brace [C]//Proceedings of the18th analysis and computation specialty conference, 2008. 被引量:1
  • 5Eatherton M R, Hajjar J F. Residual drifts of self-centering systems including effects of ambient building resistance [J]. Earthquake Spectra、2011,27(3):719-744. 被引量:1
  • 6中国建筑科学研究院.GB50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010. 被引量:141
  • 7Deierlein G G,Ma X, Eatherton M, et al. Collaborative research on development of innovative steel braced frame systems with controlled rockingand replaceable fuses[C]//Proc. 6th International Conference on Urban Earthquake Engineering, Tokyo, 2009: 413-416. 被引量:1
  • 8SAC Joint Venture. FEMA-335C, State of the art report on systems performance of steel moment frames subject to earthquake ground shaking[M].USA, 2000. 被引量:1
  • 9杨溥,李英民,赖明.结构时程分析法输入地震波的选择控制指标[J].土木工程学报,2000,33(6):33-37. 被引量:341
  • 10Eatherton M,Hajjar J, Ma X, et al. Seismic design and behavior of steel frames with controlled rocking - Part I: concepts and quasi-static sub-assembly testing[C]//Proc., ASCE/SEI Structures Congress 2010, 2010. 被引量:1

二级参考文献42

  • 1FEMA 273 NEHRP guidelines and commentary for seismic rehabilitation of buildings [ S ]. Washington DC, USA: Federal Emergency Management Agency, 1997. 被引量:1
  • 2FEMA 356 Prestandard and commentary for the seismic rehabilitation of buildings[ S]. Washington DC, USA: Federal Emergency Management Agency, 2000. 被引量:1
  • 3FEMA 445 Next-generation performance-based seismic design guidelines: program plan for new and existing buildings [ S]. Washington DC, USA : Federal Emergency Management Agency, 2007. 被引量:1
  • 4Report of the seventh joint planning meeting of NEES/ E-defense collaborative research on earthquake engineering[ R]. PEER 2010/109. Berkeley: University of California, Berkeley, 2010. 被引量:1
  • 5Roh H. Seismic behavior of structures using rocking columns and viscous dampers [ D ]. Buffalo : University at Buffalo, The State University of New York. Department of Civil, Structural and Environmental Engineering, 2007. 被引量:1
  • 6Housner G W. The behavior of inverted pendulum structures during earthquakes [ J ]. Bulletin of the Seismological Society of America, 1963, 53 (2) : 403- 417. 被引量:1
  • 7Hukelbridge A A, Clough R W. Preliminary experimental study of seismic uplift of a steel frame [ R ]. Report No. UCB/EERC-77/22. Berkely: University of California, Berkely, 1977. 被引量:1
  • 8Hukelbridge A A. Earthquake simulation tests of a nine story steel frame with columns allowed to uplift [ R ]. Report No. UCB/EERC-77/23. Berkely: University of California, Berkely, 1977. 被引量:1
  • 9Priestley M J N, Evison R J, Carr A J. Seismic response of structures free to rock on their foundations [ J ]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1978, 11 (3) : 141-150. 被引量:1
  • 10Makris N, Konstantinidis D. The rocking spectrum and the shortcomings of design guidelines [ R ]. Report No. PEER-01/07. Bekeley : University of California, Berkeley. Pacific Earthquake Engineering Research Center, 2001. 被引量:1

共引文献699

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部