期刊文献+

张量与矩阵乘积的递推算法及相关问题 被引量:3

Recursion Algorithm about Product Between Tensors and Matrices and Some Related Problems
下载PDF
导出
摘要 在张量研究中乘法运算起着重要的作用,而由于张量的复杂性,由定义来计算张量的乘法十分不便.给出一种张量与矩阵相乘的递推算法,并特别将此算法应用于讨论四阶张量的相关运算,从而得到二元四次型的一种合同标准形,并给出二维四阶张量正定性的一个判定定理. The product plays an important role in the study of tensors.Because of the complexity of tensors,calculations starting from the tensors definition are inconvenient.A recursion algorithm about the product between tensors and matrices is proposed.Especially,this algorithm is applied to discuss the related operation of the fourth-order tensors.Then,a congruent standard form of binary-quartic-form is achieved,so as to provide a judging theorem for the positive of the order four dimension two tensors.
机构地区 东华大学理学院
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第5期711-717,共7页 Journal of Donghua University(Natural Science)
关键词 张量乘法 张量的正定性 递推算法 tensor product tensor positive recursion algorithm
  • 相关文献

参考文献7

  • 1QI L. Eigenvalues of a real supersymmetrie tensor[J]. Journal of Symbolic Computation, 2005, 40(6): 1302-1324. 被引量:1
  • 2KILMER M E, MARTIN C D, PERRONE L. A third-order generalization of the matrix SVD as a product of third-order tensors[DB/OL]. (2008-10-01)[2014-05-26]. http:// www. cs. tufts, edu/tech_reports/reports/2008-4/report, pdf. 被引量:1
  • 3MOAKHER M. The algebra of fourth-order tensors with application to diffusion MRI[M]. Visualization and Processing of Tensor Fields. Springer Berlin Heidelberg, 2009 : 57-80. 被引量:1
  • 4宋佳..张量探究及有关张量的L-H型不等式[D].东华大学,2014:
  • 5SHAO J Y. A general product of tensors with applications[J]. Linear Algebra and Its Applications, 2013, 439 (18): 2350-2366. 被引量:1
  • 6SHAO J Y, SHAN H Y, ZHANG L. On some properties of the determinants of tensors [J]. Linear Algebra and Its Applications, 2013, 439(10): 3057-3069. 被引量:1
  • 7HU S, HUANG Z H, LING C, et al. On determinants and eigenvalue theory of tensors [J]. Journal of Symbolic Computation, 2013, 50. 508-531. 被引量:1

同被引文献29

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部