期刊文献+

Riccati方程子矩阵约束对称解的非精确Newton-MCG算法 被引量:3

INEXACT NEWTON-MCG ALGORITHM FOR SYMMETRIC SOLUTION WITH A SUBMATRIX CONSTRAINT OF RICCATI MATRIX EQUATION
原文传递
导出
摘要 采用修正共轭梯度法(MCG算法)求由Newton算法每一步迭代计算导出的线性矩阵方程的近似子矩阵约束(SMC)对称解或者近似SMC对称最小二乘解,建立求离散时间代数Riccati矩阵方程SMC对称解的非精确Newton-MCG算法.该算法仅要求Riccati矩阵方程有SMC对称解,不要求它的SMC对称解唯一,也不要求导出的线性矩阵方程有相应的SMC对称解.数值算例表明,非精确Newton-MCG算法是有效的. In this paper, the inexact Newton-MCG algorithm for solving the symmetric solution with a submatrix constraint of the discrete-time algebraic Riccati equation is proposed. The algorithm is based on the MCG algorithm, which is applied to getting the approximate symmetric solution or the approximate symmetric least-square solution with a submatrix constraint of linear matrix equation derived from each Newton step. It only requires the Riccati equation to have the symmetric solution with a submatrix constraint, and the solution may not be unique. Moreover, it doesn't require the derived linear matrix equation to have the relevant solution. Numerical results illustrate the efficiency of the algorithm.
出处 《数值计算与计算机应用》 CSCD 2015年第4期288-296,共9页 Journal on Numerical Methods and Computer Applications
基金 国家自然科学基金(11471262)
关键词 Riccati矩阵方程 子矩阵约束对称解 非精确Newton算法 MCG算法 非精确Newton—MCG算法 Riccati matrix equation symmetric solution with a submatrix constraint inexact Newton method MCG method inexact Newton-MCG algorithm
  • 相关文献

参考文献11

  • 1Kim Sang Woo, Park Poo Gyeon. Matrix bounds of the discrete ARE solution[J]. Systems and Control Letters, 1999, 36(1): 15-20. 被引量:1
  • 2Davies Richard, Shi Peng, Wiltshire Ron. New upper solution bounds of the discrete algebraic Riccati matrix equation[J]. Journal of Computational and Applied Mathematics, 2008, 213(2): 307-315. 被引量:1
  • 3Bouhamidi Abderrahman, Jbilou Khalide. On the convergence of inexact Newton methods for discrete-time algebraic Riccati equations[J]. Linear Algebra and its Applications, 2013, 439(7): 2057-2069. 被引量:1
  • 4Deift P, Nanda T. On the determination of a tridiagonal matrix from its spectrum and a subma- trix[J]. Linear Algebra and its Applications, 1984, 60:43-55. 被引量:1
  • 5王明辉,魏木生,姜同松.子矩阵约束下矩阵方程AXB=E的极小范数最小二乘对称解[J].计算数学,2007,29(2):147-154. 被引量:11
  • 6Li Jiaofen, Hu Xiyan, Zhang Lei. The nearness problems for special submatrix constraint[J]. Numerical Algorithms, 2010, Peng Zhuohua. 被引量:1
  • 7symmetric centrosymmetric with a 55(1): 39-57 matrix equation with a submatrix Long Jianhui, Hu Xiyan, Zhang Lei. Improved Newton's method with exact line searches to solve quadratic matrix equation[J]. Journal of Computational and Applied Mathematics, 2008, 222(2): 645-654. 被引量:1
  • 8The reflexive least squares solutions of the constraint[J]. Numerical Algorithms, 2013, 64(3): 455-480. 被引量:1
  • 9张凯院编著..矩阵方程约束解的迭代算法[M].北京:国防工业出版社,2015:240.
  • 10张凯院,牛婷婷,聂玉峰.一类非线性矩阵方程对称解的双迭代算法[J].计算数学,2014,36(1):75-84. 被引量:4

二级参考文献19

  • 1Deng Y,Hu X Y and Zhang L.Least squares solutions of BXAT=T over symmetric,skew-symmetric,and positive semidefinite X*.SIAM J.Matrix Anal.Appl.,2003(25):486-494. 被引量:1
  • 2Higham N.Computing a nearest symmetric positive semidefinite matrix.Linear Algebra Appl.,1988(103):103-118. 被引量:1
  • 3Higham N.The symmetric procrustes problem.BIT,1988(28):133-143. 被引量:1
  • 4Trench W.Hermitian,Hermitian R-symmetric,and hermitian R-skew symmetric procrustes problems.Linear Algebra Appl.,2004(387):83-98. 被引量:1
  • 5Peng Z.An iterative method for the least squares symmetric solution of the linear matrix equation AXB=C.Appl.Math.Comput.,2005(170):711-723. 被引量:1
  • 6Deift P,Nanda T.On the determination of a tridiagonal matrix from its spectrum and a submatrix.Linear Algebra.Appl.,1984(60):43-55 被引量:1
  • 7Peng Z,Hu X Y,Zhang L.The inverse problem of bisymmetric matrices with a submatrixconstraint.Numer.Linear Algebra.Appl.,2004(11):59-73. 被引量:1
  • 8Andersson L E,Elfving Tommy.A constrained procrustes problem.SIAM J.Matrix Anal.Appl.,1997,18(1):124-139. 被引量:1
  • 9Sakhnovich L A. Interpolation Theory and Its Applications[A].Kluwer Academic,Dordrecht,1997. 被引量:1
  • 10Ran A C M,Reurings M C B. A nonlinear matrix equation connected to interpolation theory[J].Linear Algebra and its Applications,2004.289-302. 被引量:1

共引文献14

同被引文献13

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部