期刊文献+

离散抽样方差互换定价研究

Pricing discretely-sampled variance swaps under a class of SVJ models
下载PDF
导出
摘要 文章在一类随机波动跳跃(SVJ)模型下给出离散抽样远期起始方差互换公平敲定价解析解存在的充分条件和具体计算方法.文中所定义的这一类SVJ模型包含了很多现有文献中广泛使用的SVJ模型.先前关于离散抽样方差互换公平敲定价解析解的研究都局限在仿射型随机波动模型下,而文章中的方法不仅适用于仿射模型,对许多非仿射模型同样适用.文章在Heston模型和Hull&White模型下给出解析解表达式和数值计算结果.Heston模型为仿射结构,现有文献已有解析解;而Hull&White模型为非仿射结构,现有文献中只提供了数值解.通过比较可以发现,文章中的结果与现有文献中的解析解和数值解非常接近,从而佐证了结论的正确性. We derive analytic formulas for fair strike prices of discretely-sampled( forward-start) variance swaps under a class of stochastic volatility jump( SVJ) models. This class covers a couple of stochastic volatility and jump models which have been studied widely in literature including both affine and non-affine models.We demonstrate a general methodology to find analytic formulas for the class while we obtain explicit solutions for several special cases. Numerical examples show that our solutions give close results to Monte Carlo simulations. Obviously,our explicit solutions beat the latter in speed.
作者 杜琨 曾旭东
出处 《管理科学学报》 CSSCI 北大核心 2015年第11期70-81,共12页 Journal of Management Sciences in China
基金 国家自然科学基金资助项目(71271127)
关键词 方差互换 SVJ模型 公平敲定价 解析解 variance swap SVJ models fair strike analytic formulas
  • 相关文献

参考文献26

  • 1Brockhaus O, Long D. Volatility swaps made simple[J]. Risk, 2000, 2(1) : 92 -96. 被引量:1
  • 2Broadie M, Jain A. Pricing and hedging volatility derivatives[J]. The Journal of Derivatives, 2008, 15(3) : 7 -24. 被引量:1
  • 3Carr P, Lee R. Hedging variance options on continuous semimartingales [ J ]. Finance and Stochastics, 2010, 14 (2) : 179 - 207. 被引量:1
  • 4Kallsen J, Muhle-Karbe J, Vob M. Pricing options on variance in affine stochastic volatility models [ J ]. Mathematical Fi- nance, 2011, 21(4) : 627 -641. 被引量:1
  • 5Broadie M, Jain A. The effect of jumps and discrete sampling on volatility and variance swaps [ J ]. International Journal of Theoretical and Applied Finance, 2008, 11 (8) : 761 -797. 被引量:1
  • 6Lian G. Pricing volatility derivatives with stochastic volatility[ D]. Wollongong: University of Wollongong, 2010. 被引量:1
  • 7Zhu S, Lian G. A closed-form exact solution for pricing variance swaps with stochastic volatility[ J ]. Mathematical Finance, 2011,21(2) : 233 -256. 被引量:1
  • 8Heston S. A closed-form solution for options with stochastic volatility with applications to bond and currency options [ J ]. The Review of Financial Studies, 1993, 6(2) : 327 -343. 被引量:1
  • 9Zheng W, Kwok Y K. Closed form pricing formulas for discretely sampled generalized variance swaps[ J]. Mathematical Fi- nance, 2014, 24(4) : 855 -881. 被引量:1
  • 10Duffle D, Pan J, Singleton K. Transform analysis and option pricing for affine jump-diffusions [ J ]. Econometrica, 2000, 68(6) : 1343 - 1376. 被引量:1

二级参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部