摘要
In this paper, we propose a new lightweight block cipher named RECTANGLE. The main idea of the design of RECTANGLE is to allow lightweight and fast implementations using bit-slice techniques. RECTANGLE uses an SP-network. The substitution layer consists of 16 4 × 4 S-boxes in parallel. The permutation layer is composed of 3 rotations. As shown in this paper, RECTANGLE offers great performance in both hardware and software environment, which provides enough flexibility for different application scenario. The following are3 main advantages of RECTANGLE. First, RECTANGLE is extremely hardware-friendly. For the 80-bit key version, a one-cycle-per-round parallel implementation only needs 1600 gates for a throughput of 246 Kbits/s at100 k Hz clock and an energy efficiency of 3.0 p J/bit. Second, RECTANGLE achieves a very competitive software speed among the existing lightweight block ciphers due to its bit-slice style. Using 128-bit SSE instructions,a bit-slice implementation of RECTANGLE reaches an average encryption speed of about 3.9 cycles/byte for messages around 3000 bytes. Last but not least, we propose new design criteria for the RECTANGLE S-box.Due to our careful selection of the S-box and the asymmetric design of the permutation layer, RECTANGLE achieves a very good security-performance tradeoff. Our extensive and deep security analysis shows that the highest number of rounds that we can attack, is 18(out of 25).
In this paper, we propose a new lightweight block cipher named RECTANGLE. The main idea of the design of RECTANGLE is to allow lightweight and fast implementations using bit-slice techniques. RECTAN- GLE uses an SP-network. The substitution layer consists of 16 4 × 4 S-boxes in parallel. The permutation layer is composed of 3 rotations. As shown in this paper, RECTANGLE offers great performance in both hardware and software environment, which provides enough flexibility for different application scenario. The following are 3 main advantages of RECTANGLE. First, RECTANGLE is extremely hardware-friendly. For the 80-bit key version, a one-cycle-per-round parallel implementation only needs 1600 gates for a throughput of 246 Kbits/s at 100 kHz clock and an energy efficiency of 3.0 p J/bit. Second, RECTANGLE achieves a very competitive software speed among the existing lightweight block ciphers due to its bit-slice style. Using 128-bit SSE instructions, a bit-slice implementation of RECTANGLE reaches an average encryption speed of about 3.9 cycles/byte for messages around 3000 bytes. Last but not least, we propose new design criteria for the RECTANGLE S-box. Due to our careful selection of the S-box and the asymmetric design of the permutation layer, RECTANGLE achieves a very good security-performance tradeoff. Our extensive and deep security analysis shows that the highest number of rounds that we can attack, is 18 (out of 25).
基金
supported by National Natural Science Foundation of China(Grant No.61379138)
Research Fund KU Leuven(OT/13/071)
"Strategic Priority Research Program"of the Chinese Academy of Sciences(Grant No.XDA06010701)
National High-tech R&D Program of China(863 Program)(Grant No.2013AA014002)