期刊文献+

网格类型对飞机空舱内部流场数值计算的影响

Evaluation of different grid types for numerical simulation of airflow field in aircraft unoccupied-cabin
下载PDF
导出
摘要 目前,CFD被广泛应用于预测飞机机舱内的气流组织状况。由于网格类型的选用会影响到计算的精度和成本,但是目前很少有研究分析不同网格对计算精度的影响。因此本文模拟了飞机机舱的设计工况,即等温强迫对流下的空舱环境,比较并评价了4种网格类型(六面体网格、四面体网格、十二面体网格、混合型网格)对飞机头等舱的流场环境计算结果的影响。结果表明:十二面体网格不能得到收敛的结果,因此不适用于飞机座舱的环境计算;在四种网格类型中,混合型网格计算消耗时间最短,为16.7h,计算结果与四面体和六面体网格的结果相对误差在10%以内,推荐优先使用;六面体网格与实验结果最接近,相对误差在15%以内,但是计算时间最长,为29.5h。通过本研究也表明:混合网格在网格过渡区域的截断误差为一阶量;而其他网格的截断误差均为二阶量,该误差在流场变化很大的地方会集中出现。因此在混合网格的生成过程中,应该尽量避免网格过渡区出现在流场变化强烈的地方。 Nowadays, computational fluid dynamics(CFD) is widely used in predicting cabin air distributions. Since grids used in CFD may influence accuracy of simulated results and computing costs, meshes play a significant role in the numerical simulation. However, there are few studies that investigate influence of different meshes. The influence of four grid types(hexahedral, tetrahedral, polyhedral and hybrid cells) on simulation of forced convection in cabin is investigated in this paper. The results showed that hybrid grids have least computing time and the accuracy of hybrid meshes is similar to that of tetrahedron and hexahedron. Hence, hybrid meshes are recommended. The hexahedral grids are most accurate but the computing costs are also highest. Polyhedral grid is not suitable to cabin which has complex geometry. In addition, hybrid grid has larger truncation error in grid transition zone. The truncation error has strong influences on the flow field where it changes drastically. Hence, we should avoid using transitional grid in the area where the flow field changes violently.
出处 《应用力学学报》 CAS CSCD 北大核心 2015年第5期833-838,900,共6页 Chinese Journal of Applied Mechanics
基金 国家重点基础研究发展计划(973计划)(2012CB720100)
关键词 六面体网格 四面体网格 十二面体网格 混合型网格 hexahedron mesh,tetrahedron mesh,polyhedron mesh,hybrid mesh.
  • 相关文献

参考文献13

  • 1zheng T, Chen Q Y. Novel air distribution systems for commercial aircraft cabins[J]. Building and Environment, 2007, 42(4): 1675-1684. 被引量:1
  • 2Liu W, Wen J, Lin C H, et al. Evaluation of various categories of turbulence models for predicting air distribution in an airliner cabin[J]. Building and Environment, 2013, 65(3): 118-131. 被引量:1
  • 3Chen Q. Vemilation performance prediction for buildings: A method overview and recent applications[J]. Building and Environment, 2009, 44(4): 848-858. 被引量:1
  • 4Versterg H K, Malaiasekera W. An introduction to computational fluid dynamics: The finite volume method[M]. London: Longman Group Ltd, 1995. 被引量:1
  • 5Hefny M M, Ooka R. CFD analysis of pollutant dispersion around buildings: effect of cell geometry[J]. Building and Environment, 2009, 44(8): 1699-1706. 被引量:1
  • 6刘俊杰,刘素梅,孙贺江,肖晓劲.大型客机座舱合理排数的数值模拟[J].天津大学学报,2013,46(1):8-15. 被引量:12
  • 7Norton T, Grant J, Fallon R, et al. Assessing the ventilation effectiveness of naturally ventilated livestock buildings under wind dominated conditions using computational fluid dynamics[J]. Biosystems Engineering, 2009, 103(1): 78-99. 被引量:1
  • 8Tysell L. Hybrid grid generation for viscous flow computations around complex geometries[D]. Stockholm: Royal Institute of Technology, 2009. 被引量:1
  • 9Bianco V, Manca O, Nardini S, et al. Numerical investigation of transient thermal and fluid dynamic fields in an executive aircraft cabin[J]. Applied ThermalEngineering, 2009, 29(16): 3418-3425. 被引量:1
  • 10孙贺江,吴尘,安璐.大型客机座舱混合送风形式的数值模拟[J].应用力学学报,2013,30(3):439-444. 被引量:16

二级参考文献39

  • 1National Research Council(NRC). The airliner cabin environment and the health of passengers and crew[M]. Washington, DC: National Academy Press, 2002. 被引量:1
  • 2Zhang Tengfei, Chen Qingyan. Novel air distribution systems for commercial aircraft cabins[J]. Building and Environment, 2007, 42(4): 1675-1684. 被引量:1
  • 3Zhang Tengfei, Li Penghui, Wang Shugang. A personal air distribution system with air terminals embedded in chair armrests on commercial airplanes[J]. Building and Environment, 2012, 47(1): 89-99. 被引量:1
  • 4Zhang Tengfei, Yin Shi, Wang Shugang. An under-aisle air distribution system facilitating humidification of commercial aircraft cabins[J]. Building and Environment, 2010, 45(4): 907-915. 被引量:1
  • 5Mo Hailong, Hosni M H, Jones B W. Application of particle image velocimetry for the measurement of the airflow characteristics in an aircraft cabin[J]. ASHRAETransactions, 2003, 109(2): 101-110. 被引量:1
  • 6Garner R, Wong K, Ericson S. CFD validation for contaminant transport in aircraft cabin ventilation flow fields , DOT/FAA/Am-04/7[R]. Washington, US: US Department of Transportation, 2004. 被引量:1
  • 7Sun Yigang, Zhang Yuanhui, Wang Aijun, et al. Experimental characterization of airflows in aircraft cabins, Part 1 : Experimental system and measurement procedure[J]. ASHRAE Transactions, 2005, 111(2): 45-52. 被引量:1
  • 8Zhang Yuanhui, Sun Yigang, Wang Aijun, et al. Experimentalcharacterization of airflows in aircraft cabins, Part 2: Results and research recommendations[J]. ASHRAE Transactions, 2005, 111 (2): 53=59. 被引量:1
  • 9Singh A, Hosni M H, Horstman R H. Numerical simulation of airflow in an aircraft cabin section[J].ASHRAE Transactions, 2002, 108(1): 1005-1013. 被引量:1
  • 10Lin C H, Horstman R, Ahlers M, et al. Numerical simulation of airflow and airborne pathogen transport in aircraft cabins, Part 1: Numerical simulation of the flow field[J]. ASHRAE Transactions, 2005, 111(1): 755-763. 被引量:1

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部