期刊文献+

树种对土壤有机碳密度的影响:5种温带树种同质园试验 被引量:25

Effects of tree species on soil organic carbon density: A common garden experiment of five temperate tree species
原文传递
导出
摘要 树种通过改变凋落物输入与周转及根系活动影响土壤的理化和生物学性质及固碳功能。合理选择树种是碳汇林业中一个亟待解决的理论和实践问题。为了减少林分特征和立地条件差异的影响,2004年在相同气候、土壤和经营历史的立地上建立了东北地区常见树种同质园,10年(2013–2014年)后测定了其中的3种阔叶树(白桦(Betula platyphylla)、胡桃楸(Juglans mandshurica)、水曲柳(Fraxinus mandshurica))和两种针叶树(落叶松(Larix gmelinii)、樟子松(Pinus sylvestris var.mongolica))人工纯林的土壤有机碳(SOC)及土壤容重、全氮、微生物生物量碳、微生物生物量氮、p H值等相关因子,旨在比较探索树种对SOC含量及其垂直分布的影响。结果表明:(1)树种显著影响0–40 cm土层SOC总密度(p<0.05)。其中,0–10 cm土层SOC密度变化范围为2.79–3.08 kg·m–2,表现为胡桃楸林>水曲柳林>白桦林>落叶松林>樟子松林;10–20 cm土层变化范围为1.56–2.19kg·m–2,表现为樟子松林>胡桃楸林>水曲柳林>白桦林>落叶松林;20–30 cm土层变化范围为1.17–2.10 kg·m–2,表现为白桦林、水曲柳林显著高于其他树种纯林;30–40 cm土层变化范围为0.84–1.43 kg·m–2,表现为白桦林显著高于其他树种纯林。(2)SOC密度垂直分布格局因树种和土层而异。胡桃楸林、落叶松林0–10 cm土层SOC密度占0–40 cm土层总密度的相对量显著高于其他树种纯林,白桦林20–40 cm土层的SOC密度相对量显著高于其他树种纯林,这说明不同层次SOC密度的主控因子因树种而异。(3)不同树种纯林SOC浓度、容重差异显著,且两者呈负相关。胡桃楸林、水曲柳林和落叶松林SOC密度与土壤微生物生物量、土壤p H值均呈正相关关系。5个树种纯林SOC密度均与全氮密度呈正相关关系。研究表明,树种通过改变土壤理化性质和微生物活动而显著影响SOC密度,不同树种SOC密度垂直变化格� Aims Forest trees alter litter inputs, turnover and rhizospheric activities, modify soil physical, chemical and bio- logical properties, and consequently affect soil organic carbon (SOC) storage and carbon sink strength. That how to select appropriate tree species in afforestation, reforestation and management practices is critical to enhancing forest carbon sequestration. The objective of this study was to determine the effects of tree species on SOC den- sity and vertical distributions. Methods A common garden experiment with the same climate, soil, and management history was established in Maoershan Forest Ecosystem Station, Northeast China, in 2004. The experimental design was a completely ran- domized arrangement with twenty 25 m ~ 25 m plots, consisting of monocultures of five tree species, including white birch (Betula platyphylla), Manchurian walnut (Juglans mandshurica), Manchurian ash (Fraxinus mand- shurica), Dahurian larch (Larix gmelinii), and Mongolian pine (Pinus sylvestris var. mongolica), each with four replicated plots. A decade after the establishment (2013-2014), we measured carbon density and related factors (i.e., bulk density, total nitrogen concentration, microbial biomass carbon, microbial biomass nitrogen, pH value) in soils of the 0-40 cm depth for these monocultures. Important findings Results showed that tree species significantly influenced the SOC density in the 0-40 cm depth (p 〈 0.05). SOC density in the 0-10 cm depth varied from 2.79 to 3.08 kg'm-2, in the order of walnut 〉 ash〉 birch 〉 larch 〉 pine, in the 10-20 cm depth from 1.56 to 2.19 kg-rn-2, in the order of pine 〉 walnut 〉 ash 〉 birch 〉 larch, in the 20-30 cm depth from 1.17 to 2.10 kg'm-2, and in the 20-40 cm depth from 0.84 to 1.43 kg.m-2. The greatest SOC density occurred in the birch stands in the 20-40 cm depth. The vertical distributions of SOC density varied with tree species. The percentage of SOC in the 0-10 cm depth over the total SOC in the soil profile w
出处 《植物生态学报》 CAS CSCD 北大核心 2015年第11期1033-1043,共11页 Chinese Journal of Plant Ecology
基金 国家"十二五"科技支撑项目(2011-BAD37B01) 教育部长江学者和创新团队发展计划(IRT1054)
关键词 树种 土壤性质 土壤有机碳 土壤微生物 垂直分布 tree species, soil property, soil organic carbon, soil microbe, vertical distribution
  • 相关文献

参考文献43

  • 1Adam Langley J, Chapman SK, Hungate BA (2006). Ectomycorrhizal colonization slows root decomposition: The post-mortem fungal legacy. Ecology Letters, 9, 955- 959. 被引量:1
  • 2Bauhus J, Pare D, Cete L (1998). Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biology & Biochemistry, 30, 1077-1089. 被引量:1
  • 3Bremner J, Mulvaney C (1982). Nitrogen-total. In: Page AL, Miller RH, Keeney DR eds. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy, Madison. 595-624. 被引量:1
  • 4Diaz-Pines E, Rubio A, van Miegroet H, Montes F, Benito M (2011). Does tree species composition control soil organic carbon pools in Mediterranean mountain forests? Forest Ecology and Management, 262, 1895-1904. 被引量:1
  • 5Dijkstra FA, Fitzhugh RD (2003). Aluminum solubility and mobility in relation to organic carbon in surface soils affected by six tree species of the northeastern United States. Geoderma, 114, 3347. 被引量:1
  • 6Ellert BH, Bettany JR (1995). Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Canadian Journal of Soil Science, 75, 529-538. 被引量:1
  • 7Fontaine S, Barot S, Barr6 P, Bdioui N, Mary B, Rumpel C (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450, 277-280. 被引量:1
  • 8Frfberg M, Hansson K, Kleja DB, Alavi G (2011), Dissolved organic carbon and nitrogen leaching from Scots pine, Norway spruce and silver birch stands in southern Sweden. Forest Ecology and Management, 262, 1742-1747. 被引量:1
  • 9郭忠玲,郑金萍,马元丹,李庆康,于贵瑞,韩士杰,范春楠,刘万德.长白山各植被带主要树种凋落物分解速率及模型模拟的试验研究[J].生态学报,2006,26(4):1037-1046. 被引量:106
  • 10Gurmesa GA, Schmidt IK, Gundersen P, Vesterdal L (2013). Soil carbon accumulation and nitrogen retention traits of four tree species grown in common gardens. Forest Ecology and Management, 309, 47-57. 被引量:1

二级参考文献201

共引文献585

同被引文献489

引证文献25

二级引证文献237

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部