期刊文献+

Collatz二进制序列的算法与停时

An Algorithm and Stopping Time of Collatz Binary Sequence
下载PDF
导出
摘要 给定一个大于1的正整数n,它的下一个数由n的奇偶性决定。如果n是偶数,则下一个数为n/2,否则为3n+1。重复这样的运算,直到得到1为止。科拉茨(Collatz)猜想:对于任意给定的正整数n,经过有限步后,一定可以得到1。本文给出一个Collatz序列的Collatz-Binary算法,将Collatz序列的计算简化到只计算奇数情形,引入一个新的停时概念,并研究Collatz序列相关性质,给有限终止分析提供一种新的途径。 Given a number n, its next number is decided by the parity of n. If n is even, then the number is n~ 2, otherwise 3n + 1. One repeats the above procedure until getting 1. The resulting sequence generated by this method is called the Collatz sequence of n. Collatz conjecture is : given an arbitrary positive integer n, it will stop in 1 after a finite of steps. The paper gives an algorithm, Collatz-Binary, which is based on calculus of binary string, reducing the calculation of Collatz sequence to only consider the odd number. We introduce a new stop- ping time and investigate related property of Collatz sequence. The Collatz-Binary algorithm reduces the Collatz sequence, bringing convenience to finite termination analysis.
出处 《贵州大学学报(自然科学版)》 2015年第5期60-65,共6页 Journal of Guizhou University:Natural Sciences
基金 国家自然科学基金项目资助(61262006)
关键词 Collatz猜想 3n+1问题 串算法 停时 Collatz conjecture 3n + 1 problem calculus of binary string stopping time
  • 相关文献

参考文献12

  • 1Wikipedia. Collatz conjecture [ EB/OL]. [ 2015 - 07 - 10 ]. ht- tps ://en. wikipedia, org/wiki/Collatz_conjecture. 被引量:1
  • 2C L Jeffrey. The 3x + 1 problem and its generalizations[J]. The A- merican Mathematical Monthly, 1985,92 ( 1 ) : 3 - 23. 被引量:1
  • 3J Sinyor. The 3x + 1 Problem as a String Rewriting System[ J]. In- ternational Journal of Mathematics and Mathematical Sciences, 2010:458563 - 458563 - 6. 被引量:1
  • 4R Tetras. A stopping time problem on the positive integers [ J ]. Pol- ska Akademia Nauk, 1976,30( 3 ) :241 - 252. 被引量:1
  • 5J Simons, B de Weger. Theoretical and computational bounds for m- cycles of the 3n + 1 problem[ J]. Aeta Arithmetica( on-line version 1.0, November 18, 2003 ), 2005,117 ( 1 ) :51 - 70. 被引量:1
  • 6J O Shallit. The 3x + 1 problem and finite automata[ J]. Bulletin of the AETCS, 1992,46 : 182 - 185. 被引量:1
  • 7M Chamberland. A continuous extension of the 3x + 1 problem to the real line[ J]. Dynam Contin Discrete Impuls Systems, 1996,4 (2) :495 -509. 被引量:1
  • 8I Krasikov,C L. Jeffrey. Bounds for the 3x + 1 problem using differ- ence inequalities [ J ]. Acta Arithmetica,2003,109 (3) :237 - 258. 被引量:1
  • 9K Hicks,G L Mullen, J L Yueas, et al. A Polynomial Analogue of the 3N + 1 Problem[J]. American Math. Monthly,2008,115(7) :615 -622. 被引量:1
  • 10B Kraft,K Monks. On conjugacies of the 3x + 1 map induced by continuous endomorphisms of the shift dynamical system [ J ]. Dis- crete Mathematics,2010,310( 13 - 14) :1875 - 1883. 被引量:1

二级参考文献10

  • 1Schroeder M.Number theory in science and communication[]..1997 被引量:1
  • 2Guy R.Unsolved problems in number theory[]..1997 被引量:1
  • 3Wells D.Curious and interesting numbers[]..1998 被引量:1
  • 4Pickover CA.Computers pattern chaos and beauty[]..1990 被引量:1
  • 5Pe JL.The 3x + 1 fractal[].Comp Graph.2004 被引量:1
  • 6Mandelbrot BB.The fractal geometry of nature[]..1982 被引量:1
  • 7Wegner T,Peterson M.Fractal creations[]..1991 被引量:1
  • 8Wang XY.Fractal mechanism of the generalized M-J set[]..2002 被引量:1
  • 9Terras R.A stopping time problem on the positive integers[].Acta Arith.1976 被引量:1
  • 10Hardy G,Wright E.An introduction to the theory of num- bers[]..1983 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部