期刊文献+

单个用户浏览特征定量分析

Quantitative Analysis of Browsing Characteristics of the Individual User
下载PDF
导出
摘要 为了挖掘Web日志中蕴含的用户访问模式,针对单个用户的浏览特征进行定量分析.通过构建用户访问空间,利用拟合、幂指数、主成分分析等方法确定了纵向和横向两个面中各个维度的计算方法,并归纳了用户访问特性.分析结果表明,用户单次浏览站点数一般在25以内,且用户的访问动机确有主次之分,所关注的站点有明显的集中性和稳定性. In order to find the user access patterns which were inherent in the Web log,a quantitative analysis about the browsing characteristics of the individual user was made.After the construction of user browsing space,data fitting,power function,principal component and other methods were used to deter-mine the value of each dimension,which is included in the vertical or horizontal plane of the space.Besides, through studying,several meaningful patterns of browsing behavior were found in the experiment.Through the analysis of the results,the number of the site in single browsing times for the user is generally within 25,the access motivation has the primary and secondary points,and the attention to the site has obvious concentration and stability.
机构地区 河套学院理学系
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2015年第5期656-659,共4页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 内蒙古高等学校科学研究项目(NJZY14334)
关键词 浏览特征 用户访问空间 访问模式 定量分析 browsing characteristics user browsing space access patterns quantitative analysis
  • 相关文献

参考文献9

  • 1王伟..Web挖掘技术及其在互联网中的应用研究[D].山东大学,2013:
  • 2Chen M S,Park J S,Yu P S.Data Mining for Path Traversal Pattern in a Web Environment[R].USA:Proceedings of the 16th International Conference on Distributed Computing Systems,1996. 被引量:1
  • 3宋擒豹,沈钧毅.Web日志的高效多能挖掘算法[J].计算机研究与发展,2001,38(3):328-333. 被引量:115
  • 4邵秀丽,乜聚科,侯乐彩,田振雷.基于综合用户信息的用户兴趣建模研究[J].南开大学学报(自然科学版),2009,42(3):8-15. 被引量:10
  • 5Tang YinLing,I Hsien Ting,Shyue-Liang Wang.Website Navigation Recommendation Based on Reinforcement Learning Technique[C]//The 3rd International Workshop on Intelligent Data Analysis and Management Springer Proceedings in Complexity.Springer Netherlands Publisher,2013:87-99. 被引量:1
  • 6刘娜,张弼华,王俊义.基于部分监督学习的WEB日志数据预处理[J].内蒙古大学学报(自然科学版),2015,46(1):86-91. 被引量:1
  • 7Miller G A.The magical number seven,plus or minus two:some limits on our capacity for processing information[J].Psychological Review,1956,63:81-97. 被引量:1
  • 8Vázquez A,Oliveira J G,DezsZ,et al.Modeling bursts and heavy tails in human dynamics[J].Phys Rev E,2006,73(3):80-98. 被引量:1
  • 9高丽..教育技术虚拟社区的社区粘度研究——以ET教育技术论坛为例[D].上海师范大学,2011:

二级参考文献17

  • 1应伟,王正欧,安金龙.一种基于改进的支持向量机的多类文本分类方法[J].计算机工程,2006,32(16):74-76. 被引量:28
  • 2TerveenL,Hill W,Amento B.A system for sharing recommendations[J].Communications of the ACM,1997,40(3):59-62. 被引量:1
  • 3Paul-Alexandru Chirita,Claudiu S Firan,Wolfgang Nejdl.Personalized Query Expansion for the Web[C]//SIGIR.30th annual international ACM SIGIR conference on research and development in information retrieval,Jul 23-27,2007,Amsterdam.New York:ACM Press,2007:7-14. 被引量:1
  • 4陈俊杰,刘炜.一种基于本体的个性化模式库建模方法[J].计算机研究与发展,2007,44(7):1151-1159. 被引量:7
  • 5Zaiane O R,Proc Advances Digital Libraries Conf,1998年,19页 被引量:1
  • 6Chen M S,Proc of the 16th Int Conf Distributed Computing Systems,1996年,385页 被引量:1
  • 7Mobasher B,Tech Rep:TR96,1996年 被引量:1
  • 8Lenzerini M. Data integration:A theoretical perspective [C]//Proceedings of the Twenty-first ACM SIGACT SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 2002),2002:233-246. 被引量:1
  • 9Ciszak L. Applications of clustering and association methods in data cleaning[C]//Proceedings of the Interna- tional Muhiconference on Computer Science and InformationTechnology, 2008,03:97-103. 被引量:1
  • 10Pyle D. Data Preparation for Data Mining l-M]. San Francisco,CA= Morgan Kaufmann Publishers Inc, 1999: 540. 被引量:1

共引文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部