期刊文献+

基于G-GMM的视频序列运动目标检测算法研究 被引量:1

Research on Moving Objects Detection in Video Sequences Based on Grabcut-guassian Mixture Model
下载PDF
导出
摘要 为了能够从视频序列中快速准确地检测运动目标,在混合高斯背景差分法的基础上引入Grabcut算法,提出了一种新的运动目标检测G-GMM(Grabcut-Gaussian Mixture Model)算法。首先通过混合高斯模型背景差分法提取运动目标初始二值轮廓,构建其最小的外接矩形;然后初始化矩形内图像信息,寻找潜在前景区域;最后采用迭代算法实现最优化分割,得到准确的运动目标轮廓。实验结果表明,在静止摄像机户外视频监控系统中,提出算法具有较高的准确性和鲁棒性,对刚性和非刚性两类目标都具有较好的检测结果。 To detect moving objects accurately and rapidly from the videos sequences, this paper proposed a novel G- GMM method for automatic detection via combination of GMM and Grabcut techniques in image processing. Firstly, this algorithm uses GMM(Gaussian Mixture Model) based background subtraction to produce binary images for every moving object and then constructs their minimum marking rectangles. And then it follows the image information initialization of each marking rectangle via Grabcut. Finally, an iterative algorithm with foreground parameters is adopted to optimize the object segmentation and thus the moving object contour is obtained. Experimental results indicate that the proposed method achieves good accuracy and robustness in the still camera outdoor video surveillance system, providing promising detection results for both rigid and non-rigid objects.
作者 盛家川 杨巍
出处 《计算机科学》 CSCD 北大核心 2015年第B11期199-202,共4页 Computer Science
基金 国家自然科学基金(61502331) 天津市应用基础与前沿技术研究计划(15JCQNJC00800) 天津财经大学优秀青年学者计划项目 天津财经大学"大学生创新创业训练计划"项目(201410070014)资助
关键词 目标检测 GGMM 运动前景 图像分割 Object detection, Grabcut-gaussian mixture model(G-GMM), Foreground motion, Image segmentation
  • 相关文献

参考文献18

  • 1文嘉俊,徐勇,战荫伟.基于AdaBoost和帧间特征的人数统计[J].中国图象图形学报,2011,16(9):1729-1735. 被引量:22
  • 2刘赏,董林芳.人群运动方向异常检测算法[J].计算机科学,2013,40(11A):337-340. 被引量:3
  • 3Trulls E,Tsogkas S, Kokkinos I, et al. Segmentation-aware de- formable part models[C]//IEEE International Conference on Computer Vision and Pattern Reeognition(CVPR). 2014.-168 175. 被引量:1
  • 4张欢,安国成,张凤军,王宏安,戴国忠.多颜色空间融合的人体检测算法研究[J].中国图象图形学报,2011,16(10):1944-1950. 被引量:10
  • 5Ramirez-Quintana J A, Chacon-Murguia M I. Self-adaptive SUM-CNN neural system for dynamic object detection in normal and complex scenarios [J]. Pattern Recognition, 2015,48 (4) 1137 1149. 被引量:1
  • 6Stauffer C, Grimson W E L. Adaptive background mixture mo- dels for real time traeking[C]//1EEE International Con{erenee on Computer Vision and Pattern Recognition (CVPR). 1999 246-252. 被引量:1
  • 7Stauffer C,Grimson W E L. Learning patterns of activity using real-time tracking[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2000,22(8) : 747-757. 被引量:1
  • 8程全,马军勇.基于改进高斯混合模型的运动目标检测方法[J].计算机科学,2014,41(7):318-321. 被引量:7
  • 9] Zhao Qin-pei, Ville H,Ismo K. Random swap EM algorithm for Gaussian Mixture Models [J]. Pattern Recognition Letters,2012,33(16) : 2120-2126. 被引量:1
  • 10Nazre B, Rama R. Detection and inpainting of facial wrinkles using texture orientation fields and markov random field mode ling[J]. IEEE Transactions on Image Processing, 2014,23 ( 9 ) : 3773 3788. 被引量:1

二级参考文献57

  • 1Kim J W, Choi K S, Park W S, et al. Robust real-time people tracking system for security [ J ]. IBS Journal, 2002,2 ( 3 ) : 184- 190. 被引量:1
  • 2Yu Shengsheng, Chen Xiaoping, Sun Weiping, et al. A robust method for detecting and counting people [ C ]//Proceedings of International Conference on Audio, Language and Image Processing. Piscataway, NJ, USA : 1EEE Press, 2008 : 1545-1549. 被引量:1
  • 3Chen Thouho, Hsu Chewei. An automatic bi-directional passing- people counting method based on color Image processing [ C ]// Proceedings of 37th IEEE International Camahan Conference on Security Technology. Piscataway, N J, USA : IEEE Press, 2003 : 200-207. 被引量:1
  • 4Septian H, Tao segmentation and Conference on Ji, Tan Yappeng. People counting by video tracking [ C ]//Proceedings 9th International Control, Automation, Robotics and Vision. Piscataway, NJ, USA: IEEE Press,2006 : 1-4. 被引量:1
  • 5Antic B, Letc D.Culibrk D, et al. K-means based segmentation for real-time zenithal people counting [ C ]//Proceedings of 16th IEEE International Conference on Image Processing. Piscataway, N J, USA: IEEE Press,2009 : 2565-2568. 被引量:1
  • 6Jaijing K, Kaewtrakulpong P, Siddhichai S. Object detection and modeling algorithm for automatic visual people counting system [ C ]//Proceedings of 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. Piscataway, NJ, USA, IEEE Press ,2009, 2 : 1062-1065. 被引量:1
  • 7Gardel A, Bravo I, Jimenez P, et al. Real time head detection for embedded vision modules [ C ]// International Symposium on Intelligent Signal Processing. Piscataway, NJ, USA : IEEE Press, 2007:1-6. 被引量:1
  • 8Albiol A, Albiol A, Silla I. Statistical video analysis for crowds counting [ C ]//Proceedings of 16th IEEE International Conference on Image Processing. Piscataway, NJ, USA: IEEE Press, 2009 : 2569 -2572. 被引量:1
  • 9Rainer L, Jochen M. An extended set of Haar-like features for rapid object detection [ C ]//Proceedings of 16th IEEE International Conference on Image Processing. Piscataway, NJ, USA : IEEE Press ,2002:900-903. 被引量:1
  • 10Paul V, Michael Jones. Rapid object detection using a boosted cascade of simple features [ C ]//Proceedings of the IEEE Computer Vision and Pattern Recognition. Piscataway, NJ, USA : IEEE Press,2001:151-155. 被引量:1

共引文献103

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部