期刊文献+

基于PSO的ML-PDA算法及其并行实现 被引量:2

PSO based ML-PDA and its parallelized implementation
下载PDF
导出
摘要 针对密集杂波条件下的目标检测与跟踪问题,开展极大似然-概率数据关联(maximum likelihoodprobabilistic data association,ML-PDA)算法优化与实时计算问题研究。在算法层面,通过在极大化对数似然比(log likelihood ratio,LLR)过程中引入粒子群优化(particle swarm optimization,PSO)方法,并进一步提出基于观测引导的PSO播撒粒子方式,提升算法的计算效率;在实现层面,提出基于图形处理器(graphic processing unit,GPU)的PSO实现策略。仿真实验结果说明了基于观测引导PSO算法搜索的有效性。在GPU平台上实现该算法获得显著的加速比,验证了所提出方法具有工程实时性。 The target detection and tracking problems when involved in high dense clutter are addressed. Specifically, we propose to solve the optimization and computation problems of maximum likelihood-probabilistic data association (ML-PDA). The particle swarm optimization (PSO) algorithm to maximize the log likelihood ratio (LLR) is adopted. We propose to initialize the particles of PSO based on measurements, which improves the computation efficiency. Furthermore, we propose a scheme which allows implementing PSO in parallel on graphic processing unit (GPU). The efficiency of the proposed algorithm and the parallelized scheme are illus- trated based on simulations.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第12期2677-2682,共6页 Systems Engineering and Electronics
基金 中国博士后科学基金(2015M572463)资助课题
关键词 检测前跟踪 极大似然-概率数据关联 粒子群优化 并行处理 track before detect maximum likelihood-probabilistic data association (ML-PDA) particle swarm optimization (PSO) parallel processing
  • 相关文献

参考文献16

  • 1Salmond D, Birch H. A particle filter for track-before-detectEC3// Proc. of the American Control Conference, 2001 ..3755 - 3760. 被引量:1
  • 2Boers Y, Driessen J. Particle filter based detection for tracking[C~ff Proc. of the American Control Conference, 2001:4393 - 4397. 被引量:1
  • 3Kirubarajan T, Bar-Shalom Y. Low observable target motion a nalysis using amplitude information[J]. IEEE Trans. on Aero- space and Electronic Systems, 1996, 32(4) .. 1367 - 1384. 被引量:1
  • 4Streit R L, Luginbuhl T E. Maximum likelihood method for probabilistic multihypothesis trackingEC3//Proc, of the SPIE International Symposium on Optical Engineering and Photonics in Aerospace Sensing, 1994:394-405. 被引量:1
  • 5Schoenecker S, Willett P, Bar-Shalom Y. Comparing multitarget multisensor MI~PMHT with ML-PDA for VLO targets~C~//Proc. of the 16th International Conference on Information Fusion, 2013: 250 - 257. 被引量:1
  • 6Blanding W R, Willett P, Ba~Shalom Y, et al. Directed subspace search ML-PDA with application to active sonar tracking[J]. IEEE Trans. on Aerospace and Electronic Systems, 2008,44 ( 1 ) : 201 - 206. 被引量:1
  • 7Sanders J, Kandrot E. CUDA by example: an introduction to general-purpose GPU programming [M~. Boston, MA: Addi- son-Wesley, 2010. 被引量:1
  • 8Tang X, Su J Z, Zhao F B, et al. Particle filter track before-de- tect implementation on GPU[J]. EURASIPJournal on Wireless Communications and Networking, 2913, 2~313(.13 : 1 -c3. 被引量:1
  • 9Goodrum M A, Trotter M J, Aksel A, et al. Parallelization of particle filter algorithms[J]. Computer Architecture, 2010,616 l : 139 - 149. 被引量:1
  • 10沈艳,郭兵,古天祥.粒子群优化算法及其与遗传算法的比较[J].电子科技大学学报,2005,34(5):696-699. 被引量:89

二级参考文献4

  • 1Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proc. IEEE Int. Conf. on Neural Networks, Perth, WA,Australia, 1995. 1 942-1 948 被引量:1
  • 2Eberhart R C, Kennedy J A. A new optimizer using particle swarm theory[C]. Proc. The Sixth Int. Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995.39-43 被引量:1
  • 3Kennedy J, Eberhart R C, Shi Y. Swarm intelligence[M]. San Francisco: Morgan Kaufmann Publishers, 2001 被引量:1
  • 4Dautenhahn K. Book review: Swarm intelligence[J]. Genetic Programming and Evolvable Machines, 2002,3(1): 93-97 被引量:1

共引文献88

同被引文献10

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部