期刊文献+

非稳态流动的隐式最小二乘等几何方法 被引量:2

Implicit least squares isogeometric method for unsteady flow
下载PDF
导出
摘要 对非稳态粘性不可压流动问题提出了一种隐式最小二乘等几何计算方法。该方法先用隐式的向后多步差分格式对Navier-Stokes方程进行时间离散,再用Newton法线性化对流项,最后在每个时间步上用最小二乘等几何方法进行求解。根据该算法编制了计算程序,通过构造解析解的方法验证了程序的正确性,用该程序求解了雷诺数为5000时的非稳态二维顶盖驱动流问题,计算结果捕捉到了流动过程中涡的演化过程,表明本文方法可用于非稳态流动的求解。 An implicit least squares isogeometric method is proposed for unsteady viscous incompressible flow.The governing Navier-Stokes equations are firstly discretized implicitly in time by multi-step back-ward difference formulae,then linearized by the Newton method.Least squares isogeometric method is used to solve the linearized equations at each time step.A program was developed based on the proposed method.The program was verified using the method of manufactured solution,then used to solve unsteady 2D lid driven cavity flow at Re=5000.The evolution of vortices was resolved in the numerical results which implied the applicability of presented method for unsteady flow.
出处 《计算力学学报》 CAS CSCD 北大核心 2015年第5期639-643,共5页 Chinese Journal of Computational Mechanics
基金 国家973计划(2011CB706505)资助项目
关键词 非稳态流动 NAVIER-STOKES 方程 最小二乘等几何方法 隐式差分格式 顶盖驱动流 unsteady flow Navier-Stokes equations least squares isogeometric method implicit difference scheme lid driven cavity flow
  • 相关文献

参考文献12

  • 1陈德祥,徐自力,刘石,冯永新.Navier-Stokes方程的最小二乘等几何方法[J].计算物理,2014,31(3):285-291. 被引量:1
  • 2Chen D X, Xu Z L, Liu S, et al. Least squares finite element method with high continuity NURBS basis for incompressible Navier-Stokes equations [J]. Jour- nal of Computational Physics, 2014,260 : 204-221. 被引量:1
  • 3陈德祥,徐自力,刘石,冯永新.求解Stokes方程的最小二乘等几何分析方法[J].西安交通大学学报,2013,47(5):51-55. 被引量:8
  • 4Babuka I. Error-bounds for finite element method [J]. Numerische Mathematik, 1971,16(4) : 322-333. 被引量:1
  • 5Boehev P B, Gunzburger M D. Least-Squares Finite Element Methods [M]. New York: Springer, 2009. 被引量:1
  • 6陈德祥,窦柏通,徐自力,胡哺松.最小二乘等几何分析的多重网格方法[J].西安交通大学学报,2014,48(7):124-130. 被引量:4
  • 7Pontaza J P,Reddy J N. Space-time coupled spectral/ hp least-squares finite element formulation for the in- compressible Navier-Stokes equations[J]. Journal of Computational Physics, 2004,197 (2) : 418-459. 被引量:1
  • 8Pontaza J P. A least-squares finite element formula- tion for unsteady incompressible flows with improved velocity-pressure coupling [J]. Journal of Computa- tional Physics, 2006,217(2) : 563-588. 被引量:1
  • 9Prabhakar V, Reddy J N. Spectral/hp penalty least- squares finite element formulation for unsteady in- compressible flows [J]. International Journal for Numerical Methods in Fluids, 2008,58(3) :287-306. 被引量:1
  • 10John V, Matthies G, Rang J. A comparison of time- discretization/linearization approaches for the incom- pressible Navier-Stokes equations [ J ]. Computer Methods in Applied Mechanics and Engineering, 2006,195(44-47) : 5995-6010. 被引量:1

二级参考文献36

  • 1BABUgKA I. Error-bounds for finite element method [J]. Numerische Mathematik, 1971, 16(4): 322-333. 被引量:1
  • 2BREZZI F, FORTIN M. Mixed and hybrid finite ele- ment methods [M]. New York, USA: Springer- Verlag, 1991. 被引量:1
  • 3BOCHEV P B, GUNZBURGER M D. Finite element methods of least-squares type[J].Siam Review, 1998, 40(4): 789-837. 被引量:1
  • 4BOCHEV P B, GUNZBURGER M D. A locally con- servative mimetic least-squares finite element method for the Stokes equations[J]. Large-Scale Scientific Computing, 2010, 5910: 637-644. 被引量:1
  • 5PONTAZA J P. A least-squares finite element formu- lation for unsteady incompressible flows with improved velocity-pressure coupling [J].Journal of Computa- tional Physics, 2006, 217(2): 563-588. 被引量:1
  • 6PRABHAKAR V, REDDY J N. A stress-based least- squares finite-element model for incompressible Navier- Stokes equations [J].International Journal for Numer- ical Methods in Fluids, 2007, 54(11): 1369-1385. 被引量:1
  • 7BOCHEV P B, GUNZBURGER M D. Analysis of least- squares finite-element methods for the Stokes equations [J]. Mathematics of Computation, 1994, 63 (208): 479-506. 被引量:1
  • 8BOCHEV P B, GUNZBURGER M D. Least-squares finite element methods [M]. New York, USA: Springer-Verlag, 2009. 被引量:1
  • 9HUGHES T J R, COTTRELL J A, BAZILEVS Y. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement [J]. Computer Methods in Applied Mechanics and Engi- neering, 2005, 194(39/40/41): 4135-4195. 被引量:1
  • 10PIEGL L A, TILLER W. The NURBS book[M]. New York, USA: Springer-Verlag, 1997. 被引量:1

共引文献9

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部