摘要
对非稳态粘性不可压流动问题提出了一种隐式最小二乘等几何计算方法。该方法先用隐式的向后多步差分格式对Navier-Stokes方程进行时间离散,再用Newton法线性化对流项,最后在每个时间步上用最小二乘等几何方法进行求解。根据该算法编制了计算程序,通过构造解析解的方法验证了程序的正确性,用该程序求解了雷诺数为5000时的非稳态二维顶盖驱动流问题,计算结果捕捉到了流动过程中涡的演化过程,表明本文方法可用于非稳态流动的求解。
An implicit least squares isogeometric method is proposed for unsteady viscous incompressible flow.The governing Navier-Stokes equations are firstly discretized implicitly in time by multi-step back-ward difference formulae,then linearized by the Newton method.Least squares isogeometric method is used to solve the linearized equations at each time step.A program was developed based on the proposed method.The program was verified using the method of manufactured solution,then used to solve unsteady 2D lid driven cavity flow at Re=5000.The evolution of vortices was resolved in the numerical results which implied the applicability of presented method for unsteady flow.
出处
《计算力学学报》
CAS
CSCD
北大核心
2015年第5期639-643,共5页
Chinese Journal of Computational Mechanics
基金
国家973计划(2011CB706505)资助项目