期刊文献+

基于微裂纹界面摩擦生热的点火模型 被引量:5

Study on the model of hot-spot ignition based on friction generated heat on the microcrack face
下载PDF
导出
摘要 开展了基于微裂纹界面摩擦生热的细观点火模型研究,采用有限元方法对包含化学反应放热和摩擦生热的热传递方程进行了离散求解,计算模型中考虑了炸药颗粒熔化对升温过程的影响。着重分析了点火模型中主要参数(热点尺度、应变率和界面压力)对炸药点火的影响规律。数值研究表明,随着热点尺度的增大,热点的温度上升越快,越容易发生点火;应变率越大或者界面压力越高,热量积累越快,炸药越容易点火。 A hot-spot ignition model based on friction generated heat on microcrack face was established. In this model, the heat conduction equation including chemical reaction and friction was solved by implicit finite element method. Furthermore, the latent heat resulting from particle melting was also taken into account in this model. The effects of such key parameters hot-spot size, strain rate, and interface pressure on explosive ignition were detected and analyzed in detail. It is found that the temperature of the hot-spot rises more quickly and the response occurs earlier in time with the increase of the hot-spot size. The accumulation of heat is faster and the explosive is more likely to be ignited where the strain rate is larger or the pressure is higher.
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2015年第6期807-811,共5页 Explosion and Shock Waves
基金 国家自然科学基金项目(11302031 11372053 11402031) 中国工程物理研究院科学技术发展基金项目(2012A0101004 2014B0101014 2014A0201008)
关键词 爆炸力学 点火模型 有限元方法 微裂纹 摩擦 热点尺度 应变率 mechanics of explosion ignition model FEM microcrack friction hot-spot size strain rate
  • 相关文献

参考文献16

  • 1Asay Blaine W. Non-shock initiation of explosives[M:. Heidelberg: Springer-Verlag, 2010:15-18. 被引量:1
  • 2Bowden F P, Yoffe A D. Initiation and growth of explosives in liquids and solids:M:. Cambridge: Cambridge Uni versity Press, 1952. 被引量:1
  • 3Bowden F P, Yoffe A D. Hot spots on rubbing surfaces and the detonation of explosives by friction[J]. Proceed- ings of the Royal Society of London, Series A: Mathematical b- Physical Sciences, 1947,188(10) :329-349. 被引量:1
  • 4Amosov A P, Bostandzhiyan S A, Kozlov V S. Ignition of solid explosives by the heat of dry friction[J]. Fizika Goreniya i Vzryva, 1972,8(3) : 362-368. 被引量:1
  • 5Amosov A P, Bostandzhiyan S A, Kozlov V S, et al. Mechanism of heating up and ignition of solid explosives due to external friction as a result of mechanical stimulations[J]. Fizika Goreniya i Vzryva, 1976,12(5):699-703. 被引量:1
  • 6Wiegand D A, Redingius B: Ellis K, et al. Pressure and friction dependent mechanical strength-cracks and plastic flow[J]. International Journal of Solids and Structures, 2011,48(1t/12):1617-1629. 被引量:1
  • 7Wiegand D A, Redingius B, Ellis K, et al. Evidence for fricgtion between crack surfaces during deformation of dcomposite plastic bonded explosives[C]//Elert M L, Buttle W T, Furnish M D, et al. Proceedings of Shock Com- pression of Condensed Matter-2009. Nashville, Tennessee, 2009:349-352. 被引量:1
  • 8Wiegand D A, Redingius B. The role of friction in the mechanical failure properties of a polymer particulate com- posite[C]//APS March Meeting. New Orleans, 2008. 被引量:1
  • 9陈文.高速侵彻条件下战斗部装药安全性研究[D].北京:北京理工大学机电学院,2009. 被引量:3
  • 10Boyle V, Frey R, Blake O. Combined pressure shear ignition of explosive[C] // Lee E L, Short J M. Proceedings of the 9th International Detonation Symposium. Oregon, Portland, 1989:3-17. 被引量:1

共引文献2

同被引文献32

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部