期刊文献+

空间数据挖掘认识及其思考 被引量:3

Understanding and consideration of spatial data mining
下载PDF
导出
摘要 在这个大数据时代,空间数据正在从各个领域飞速累计。空间数据挖掘作为数据挖掘的一部分,现已成为人们研究空间数据的重点学科。主要介绍了空间数据挖掘的基本概念、一般步骤及其最新的挖掘方法,表达了对当前空间数据挖掘的看法。最后对未来空间数据挖掘的研究方向进行了更加深入的探讨。 In this era of big data, spatial data are accumulated from various fields rapidly. Now, the Spatial Data Mining (SDM), as a part of Data Mining(DM), has become the key subject of research on spatial data. In this paper, we mainly introduce the basic concept of SDM, the general steps and the latest mining methods, expressing the opinions of the current SDM. At last, we discuss the future research objectives in SDM deeply.
出处 《微型机与应用》 2015年第22期12-13,21,共3页 Microcomputer & Its Applications
关键词 大数据 空间数据挖掘 挖掘方法 big data spatial data mining mining methods
  • 相关文献

参考文献10

二级参考文献40

  • 1刘君强,潘云鹤.挖掘空间关联规则的前缀树算法设计与实现[J].中国图象图形学报(A辑),2003,8(4):476-480. 被引量:8
  • 2杨立才,赵莉娜,吴晓晴.基于蚁群算法的模糊C均值聚类医学图像分割[J].山东大学学报(工学版),2007,37(3):51-54. 被引量:18
  • 3王家耀 邹建华.地图制图数据处理的模型方法[M].北京:解放军出版社,1991.. 被引量:1
  • 4Ujjwal M,Sanghamitra B.Genetic Algorithm Based Clustering Technique[J].Patten Recognition,2000,33(9):1455. 被引量:1
  • 5Huang Z.Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values[J].Data Mining and Knowledge Discovery,1998,2(3):283. 被引量:1
  • 6Barzohar M,Cooper D B.Automatic Finding of Main Roads in Areial Images by Using Geometric-Stochastic Models and Estimation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(7):707-721. 被引量:1
  • 7Florence Tupin, Henri Maitre, Jean-Francois Mangin, et al. Dectection of Linear Features in SAR Images: Application to Road Network Extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(2): 434-453. 被引量:1
  • 8Aaron K Shackelford, Curt H Davis. Fully Automated Road Network Extraction from High-Resulution Satellite Multispectral Imagery[A].IGARSS 2003,[C]. France, 2003. 被引量:1
  • 9Fortier A, Ziou D, Armenalds C, et al. Survey of Work on Road Extraction in Aerial and Satellite Images, Technical Report. [EB/OL]. URL: http:∥citeseer. nj. nec. com/fortier99survey. html,2004-03-04. 被引量:1
  • 10Zhou S H. Unsupervised Texture Segmentation. Via. Gaussian Markov Random Field (GMRF) Model[EB/OL]. URL: http:∥www.cfar. umd. edu/~ shaohua/papers/739j _ texseg _ report. doc, 2001, 3 被引量:1

共引文献84

同被引文献20

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部