期刊文献+

甘蔗TB1基因的克隆与生物信息学分析 被引量:5

Cloning and Bioinformatics Analysis of the TB1 Gene in Sugarcane
下载PDF
导出
摘要 以负调控禾本科植物分蘖的关键基因TB1为研究对象,根据水稻、玉米、高粱TB1同源基因保守序列设计引物,使用RT-PCR方法和RACE技术从甘蔗茎尖处克隆到该基因的同源基因Sc TB1。Sc TB1 c DNA全长1 668 bp,包含274 bp的5′UTR,1 149 bp的CDS和245 bp的3′UTR。生物信息学分析表明该基因可编码382个氨基酸残基,编码产物含有保守的SP区、TCP区和R区,属于TCP家族转录因子。其分子量为40.7 ku,理论等电点为8.55,蛋白亚细胞定位预测其主要定位于细胞质。系统进化分析表明Sc TB1属于CYC/TB1亚族蛋白,与高粱TB1和玉米TB1聚为一个亚类。根据序列的保守性和预测结果可推测Sc TB1很可能也参与了甘蔗分蘖性状的调控。 In this study, TB1 homolog of sugarcane was cloned from the stem apex by using RT-PCR and RACE method referring to the conserved sequence of TB1 homologs in rice, maize and sorghum. The c DNA length of Sc TB1 is 1 668 bp, which contains 274 bp 5′ UTR, 1 149 bp CDS and 245 bp 3′ UTR. Bioinformatics analysis showed that Sc TB1 belonged to the TCP family of transcription factors, which is composed of 382 amino acid residues and contains three conservative domains(SP, TCP and R domains). The molecular weight and theoretical isoelectric point of Sc TB1 was 40.7 ku and 8.55, respectively, and the gene was likely located in cytoplasm.Phylogenetic tree analysis indicates that Sc TB1 belonged to CYC/TB1 subfamily and had a very close relationship with TB1 homologs of maize and sorghum. Based on the sequence conservation, it is suggested that Sc TB1 may be required for the regulation of tillering trait. This study provides important information for further research on the functional analysis and regulating mechanisms of Sc TB1 in future.
出处 《热带作物学报》 CSCD 北大核心 2015年第11期1978-1985,共8页 Chinese Journal of Tropical Crops
基金 国家自然科学基金(No.31360359) 云南省中青年学术技术带头人后备人才(No.2014HB038) 云南省攻关项目(No.2012BB014) 经济作物种质资源发掘与创新利用(No.2013BAD01B03-15) 云南省应用基础研究计划青年项目(No.2015FD063)
关键词 甘蔗 分蘖 TB1基因 克隆 生物信息学分析 Sugarcane Tillering TB1 gene Cloning Bioinformatics analysis
  • 相关文献

参考文献18

  • 1Henry R J, Kole C. Genetics, genomics and breeding of sugarcane[M]. Science Publishers, Inc, 2010. 被引量:1
  • 2陈如凯等著..现代甘蔗遗传育种[M].北京:中国农业出版社,2011:525.
  • 3Cubas P, Lauter N, l)oebley J, et ol. The TCP domain: a motif found in proteins regulating plant growth and development[J]. The Plant Journal, 1999, 18(2): 215-222. 被引量:1
  • 4Doebley J, Stec A, Hubbard k The evolution of apical dominance in maize[J]. Nature, 1997, 386: 485-488. 被引量:1
  • 5Finlayson S A. Arabidopsis TEOSINTE BRANCHED1-LIKE 1 regulates axillary bud outgrowth and is homologous to monocot TEOSINTE BRANCHEDI[J]. Plant and Cell Physiology, 2007, 48(5) : 667-677. 被引量:1
  • 6Choi M S, Woo M O, Koh E B, et ol. Teosinte Branched 1 modulates tillering in rice plants[J]. Plant Cell Reports, 2012, 31(1): 57-65. 被引量:1
  • 7Takeda T, Suwa Y, Suzuki M, et ol. The OsTB1 gene negatively regulates lateral branching in rice[J]. The Plant Journal, 2003, 33(3): 513-520. 被引量:1
  • 8Kebrom T H, Burson B L, Finlayson S & Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals[J]. Plant Physiology, 2006, 140(3): 1 109-1. 被引量:1
  • 9117. Aguilar-Martfnez J A, Poza-Carri6n C," Cubas P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds[J]. The Plant Cell, 2007, 19(2): 458-472. 被引量:1
  • 10Pribil M, Hermann S, Dun G, et al. Altering sugarcane shoot architecture through genetic engineering: prospects for increasing cane and sugar yielc[J]. Proceedings of the Conference of the Australian Society of Sugar Cane Technologists, 2007, 29: 251-257. 被引量:1

二级参考文献30

  • 1Xuan Yao,Hong Ma,Jian Wang,Dabing Zhang.Genome-Wide Comparative Analysis and Expression Pattern of TCP Gene Families in Arabidopsis thaliana and Oryza sativa[J].Journal of Integrative Plant Biology,2007,49(6):885-897. 被引量:49
  • 2Boss P.K.,Davies C.,and Robinson S.P.,1996,Analysis of the expression of anthocyanin pathway genes in developing Vitis vinirera L.cv Shiraz grape berries and the implications for pathway regulation,Plant Physiol.,111(4):1059-1066. 被引量:1
  • 3Bordoli L.,Kiefer F.,Arnold K.,Benkert P.,Battey J.,and Schwede T.,2009,Protein structure homology modeling using SWISS-MODEL workspace,Nature Protocols,4(1):1-13. 被引量:1
  • 4Graham T.L.,1998,Flavonoid and flavonol glycoside metabolism in Arabidopsis,Plant physiol.Biochem.,36(1-2):135-144. 被引量:1
  • 5Harrison C.J.,and Langdale J.A.,2006,A step by step guide to phylogeny reconstruction,The Plant Journal,45(4):561-572. 被引量:1
  • 6Mulichak A.M.,Losey H.C.,Lu W.,Wawrzak Z.,Walsh C.T.,and Garavito R.M.,2003,Structure of the TDP-epi-vancosaminyltransferase GtfA from the chloroeremomycin biosynthetic pathway,Proc.Natl.Acad.Sci.,USA,100(16):9238-9243. 被引量:1
  • 7Mulichak A.M.,Lu W.,Losey H.C.,Walsh C.T.,and Garavito R.M.,2004,Crystal structure of vancosaminyltransferase GtfD from the vancomycin biosynthetic pathway:Interactions with acceptor and nucleotide ligands,Biochemistry,43(18):5170-5180. 被引量:1
  • 8Poudel P.R.,Goto-Yamamoto N.,Mochioka R.,Kataoka I.,and Beppu K.,2008,Expression analysis of UDP-glucose:Flavonoid-3-O-glucosyltransferase (UFGT) gene in an interspecifichybrid grape between Vitis ficifolia var.ganebuand Vitis vinifera cv.Muscat of Alexandria,Plant Biotechnol.Rep.,2(4):233-238. 被引量:1
  • 9Sun Y.,and Hrazdina G.,1991,Isolation and characterization of a UDPGlucose:Flavonol03-glucosyltransferase from illuminated red cabbage (Brassica oleracea cv Red Danish) seedlings,Plant Physiol.,95:570-576. 被引量:1
  • 10Sparvoli F.,Martin C.,Scienza A.,Gavazzi G.,and Tonelli C.,1994,Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.),Plant Molecular Biology,24(5):743-755. 被引量:1

共引文献52

同被引文献149

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部