期刊文献+

管道泄漏声振动信号的特征分析 被引量:14

Feature analysis of pipeline leakage acoustic signals for leak identification
下载PDF
导出
摘要 管道泄漏声振动是泄漏过程中多种事件共同作用产生的,所以使用多种特征才可能比较准确地描述管道泄漏声信号。合理的选取和使用这些特征对于泄漏信号识别至关重要。通过分析泄漏过程,确定选取信号的随机性和频率分布特性作为泄漏特征。由于随机性和频域特性可由多种参数描述,于是比较了各种参数作为泄漏特征值的辨识效果。使用支持向量机作为分类器,对比了使用单种特征以及组合使用多种相同或不同类特征时,实际供水管道声振动及管道泄漏的识别效果。使用两种特征的识别准确率普遍高于使用单种特征的情况,然而使用更多的特征却并没有进一步提高准确率。其中样本熵和功率谱分布特征的组合准确率最高,达到了93%,而且使用此特征组合能够正确区别管道周围常见噪声。 Leakage acoustic signal of pipelines is originated from the concurrent events during leaking. This physical fact suggests that only by combining multiple features of the signal can a leak be uniquely identified. Reasonable selection and appropriate application of features is the key to develop a valid leak recognizing pattern. According to the mechanism of leaking, the characteristics of randomness and frequency distribution are chosen as leak features. Since the randomness and frequency distribution can be described with various characteristics, a single characteristic and the combination of multiple characteristics from the same or different classes are compared for identifying leaks based on abundant acoustic signal samples collected from practical water-supplied pipelines.The Support Vector Machine is used for recognition. The recognition effect with two characteristics is better than that with a single characteristic, particularly the combination of sample entropy and power spectral distribution obtains the highest correct rate of 93%. However, more characteristics fail to produce further improvement in the correct rate of recognition. With the selected features, common noise and mimicked leakage sound can also be identified correctly.
出处 《声学技术》 CSCD 北大核心 2015年第5期413-418,共6页 Technical Acoustics
基金 国家自然科学基金资助项目(61174017)
关键词 管道泄漏识别 特征提取 模式识别 频域分布 统计特征 pipeline leak identification feature extraction pattern recognition frequency distribution statistical property
  • 相关文献

参考文献26

  • 1舒诗湖,何文杰,赵明,高金良,袁一星,赵洪宾.供水管网漏失检测技术现状与进展[J].给水排水,2008,34(6):114-116. 被引量:31
  • 2Michael S. Detection of leaks in pipelines. US Patent, 5416724[P]. 1995. 被引量:1
  • 3QIN Wan, Daniel Koch. Multichannel specteal analysis for tube leak detection[C]//Southeastconc Proceedings IEEE, 1993: 1-4. 被引量:1
  • 4Osama Hunaidi, Wing T. Chu. Acoustical characteristics of leak signals in plastic water distribution pipes[J]. Applied Acoustics, 1999, 58: 235-254. 被引量:1
  • 5QU Zhigang, FENG Hao, ZENG Zhoumo, et al. A SVM-based pipeline leakage detection and pre-warning system[J]. Measure- ment, 2010, 43: 513-519. 被引量:1
  • 6李光海,刘时风,耿荣生,沈功田.声发射源特征识别的最新方法[J].无损检测,2002,24(12):534-538. 被引量:25
  • 7Majid Ahadi, Mehrdad Sharif Bakhtiar. Leak detection in wa- ter-filled plastic pipes through the application of tuned wavelet transforms to acoustic emission signals[J]. Applied Acoustics, 2010, 71(7): 634-639. 被引量:1
  • 8杨进,文玉梅,李平.基于相关分析和近似熵的管道泄漏声信号特征提取及辨识方法[J].仪器仪表学报,2009,30(2):272-279. 被引量:51
  • 9YANG Jin, WEN Yumei, LI Ping. Approximate entropy-based leak detection using artificial neural network in water distribution pipelines[C]//Control Automation Robotics Vision, 11th Interna- tional Conference on, 2011, 1029-1034. 被引量:1
  • 10甄锦鹏.供水管道泄漏声信号特征分析[D].重庆:重庆大学,2014. 被引量:1

二级参考文献63

共引文献123

同被引文献103

引证文献14

二级引证文献157

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部