期刊文献+

大数据挖掘的粒计算理论与方法 被引量:93

Theory and method of granular computing for big data mining
原文传递
导出
摘要 大数据往往呈现出大规模性、多模态性以及快速增长性等特征.粒计算是智能信息处理领域中大规模复杂问题求解的有效范式.从推动大数据挖掘研究角度,本文首先概要地讨论了大数据的特征对可计算性、有效性与高效性提出的3大挑战;其次,结合粒计算的思维模式特点,概述了已有研究成果,分析论述了以粒计算应对大数据挖掘挑战的可行性,认为粒计算有望为大数据挖掘提供一条极具前途的崭新途径;最后,对大数据挖掘的粒计算理论与方法中的若干科学问题进行了梳理与展望,以期抛引这一领域的学术思考与研究工作. The external torm of big data often presents large-scale, multiple Inodal, and growth characteristics. In this paper, we discuss and analyze the ehallenges in data mining from the viewpoint of big data; these challenges include computability, effectiveness, and efficiency. Granular computing is an effective method for solving complex problems for intelligent information processing. By analyzing the feasibility of large data analysis based oil granular computing, we argue that gramular computing shows great promise as a new way for data mining in the context of big data. We also analyze several important problems in data mining based on granular computing, and the results will lead to further interpretations and developments in the field of big data mining.
出处 《中国科学:信息科学》 CSCD 北大核心 2015年第11期1355-1369,共15页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:61432011,U1435212,61322211) 国家重点基础研究发展计划(973计划)(批准号:2013CB329404) 教育部新世纪人才支持计划(批准号:NCET-12-1031)资助项目
关键词 大数据 数据挖掘 模式发现 粒计算 信息粒化 多粒度 big data, data mining, pattern discovery, granular computing, information granulation, multigran-ulation
  • 相关文献

参考文献72

  • 1李国杰.大数据研究的科学价值.中国计算机学会通讯,2012,8(9):8—15. 被引量:10
  • 2王元卓,靳小龙,程学旗.网络大数据:现状与展望[J].计算机学报,2013,36(6):1125-1138. 被引量:712
  • 3孟小峰,李勇,祝建华.社会计算:大数据时代的机遇与挑战[J].计算机研究与发展,2013,50(12):2483-2491. 被引量:148
  • 4Lynch C, Goldston D, Howe D, et al. Big data. Nature, 2008, 455: 1-136. 被引量:1
  • 5Science Staff. Dealing with data. Science, 2011, 331: 639-806. 被引量:1
  • 6张长水.机器学习面临的挑战[J].中国科学:信息科学,2013,43(12):1612-1623. 被引量:33
  • 7Wu X D, Zhu X Q, Wu G Q, et al. Data mining with big data. IEEE Trans Knowl Data Eng, 2014, 26: 97-107. 被引量:1
  • 8Das S, Sismanis Y, Beyer K S, et al. Ricardo: intergrating R and Hadoop. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, New York, 2010. 987-998. 被引量:1
  • 9Wegener D, Mock M, Adranale D, et al. Toolkit-based high-performance data mining of large data on MapReduce clusters. In: Proceedings of the 2009 IEEE International Conference on Data Mining Workshops, Washington, 2009.296-301. 被引量:1
  • 10Iris M, Klaus B, Rainer G, et al. Mind the gap: large-scale frequent sequence mining. In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, New York, 2013. 797-808. 被引量:1

二级参考文献95

  • 1ZHANG Wenxiu,WEI Ling,QI Jianjun.Attribute reduction theory and approach to concept lattice[J].Science in China(Series F),2005,48(6):713-726. 被引量:73
  • 2ZHANG WenXiu,QIU GuoFang,WU WeiZhi.A general approach to attribute reduction in rough set theory[J].Science in China(Series F),2007,50(2):188-197. 被引量:2
  • 3[2]T Y Lin, Q Liu. First-order rough logicⅠ: Approximate reasoning via rough sets. Fundamenta Informaticae, 1996, 27(2-3): 137~154 被引量:1
  • 4[3]A Skowron. Toward intelligent systems: Calculi of information granules. Bulletin of International Rough Set Society, 2001, 5(1/ 2): 9~30 被引量:1
  • 5[4]A Skowron, J Stepaniuk, James F Peters. Extracting patterns using information granules. Bulletin of International Rough Set Society, 2001, 5(1/ 2): 135~142 被引量:1
  • 6[6]Q Liu. Granular language and its deductive reasoning. Communications of Institute of Information and Computing Machinery, 2002, 5(2): 63~66 被引量:1
  • 7[8]M Banerjee, M K Chakraborty. Rough algebra. Institute of Computer Science, Warsaw University of Technology, ICS, Tech Rep: 47/93, 1993 被引量:1
  • 8[9]Q Liu. λ-level rough equality relation and the inference of rough paramodulation. In: Proc of the 2nd Int'l Conf on Rough Sets and Current Trends in Computing(RSCTC'2000), LNAI 2005. Berlin: Springer, 2000. 462~469 被引量:1
  • 9[11]Qing Liu, Qun Liu. Approximate reasoning based on granular computing in granular logic. 2002 Int'l Conf on Machine Learning and Cybernetics, Hoboken, USA, 2002 被引量:1
  • 10[12]Q Liu. Granules and reasoning based on granular computing. In: Proc of the 16th Int'l Conf on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems(IEA/AIE 2003), LNAI 2718. Berlin: Springer, 2003. 516~527 被引量:1

共引文献2296

同被引文献802

引证文献93

二级引证文献552

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部