期刊文献+

Eddy analysis in the Eastern China Sea using altimetry data 被引量:5

Eddy analysis in the Eastern China Sea using altimetry data
原文传递
导出
摘要 Statistical characteristics of mesoscale eddies in the Eastern China Sea (ECS) are analyzed using altimetry sea surface height anomaly (SSHA) data from 1993 to 2010. A velocity geometry-based automated eddy detection scheme is employed to detect eddies from the SSHA data to generate an eddy data set. About 1,096 eddies (one lifetime of eddies is counted as one eddy) with a lifetime longer than or equal to 4 weeks are identified in this region. The average lifetime and radius of eddies are 7 weeks and 55 km, respectively, and there is no significant difference between cyclonic eddies (CEs) and anticyclonic eddies (AEs) in this respect. Eddies' lifetimes are generally longer in deep water than in shallow water. Most eddies propagate northeastward along the Kuroshio (advected by the Kuroshio), with more CEs generated on its western side and AEs on its eastern side. The variation of the Kuroshio transport is one of the major mechanisms for eddy genesis, however the generation of AEs on the eastern side of the Kuroshio (to the open ocean) is also subject to other factors, such as the wind stress curl due to the presence of the Ryukyu Islands and the disturbance from the open ocean. Statistical characteristics of mesoscale eddies in the Eastern China Sea (ECS) are analyzed using altimetry sea surface height anomaly (SSHA) data from 1993 to 2010. A velocity geometry-based automated eddy detection scheme is employed to detect eddies from the SSHA data to generate an eddy data set. About 1,096 eddies (one lifetime of eddies is counted as one eddy) with a lifetime longer than or equal to 4 weeks are identified in this region. The average lifetime and radius of eddies are 7 weeks and 55 km, respectively, and there is no significant difference between cyclonic eddies (CEs) and anticyclonic eddies (AEs) in this respect. Eddies' lifetimes are generally longer in deep water than in shallow water. Most eddies propagate northeastward along the Kuroshio (advected by the Kuroshio), with more CEs generated on its western side and AEs on its eastern side. The variation of the Kuroshio transport is one of the major mechanisms for eddy genesis, however the generation of AEs on the eastern side of the Kuroshio (to the open ocean) is also subject to other factors, such as the wind stress curl due to the presence of the Ryukyu Islands and the disturbance from the open ocean.
出处 《Frontiers of Earth Science》 SCIE CAS CSCD 2015年第4期709-721,共13页 地球科学前沿(英文版)
基金 The altimeter data are obtained from the AVISO Web site, and the CCMP sea surface wind vector data are obtained from the Asia Pacific Data Research Center (APDRC) Web site. Funding for this study is provided by the National Natural Science Foundation of China (Grant No. 41276033) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). CD appreciates the supports from the National Natural Science Foundation of China (Grant Nos. 41476022 and 41490643). Startup Foundation for Introducing Talent of Nanjing University of Intbrmation Science and Technology (2013r121, 2014r072), Program for Innovation Research and Entrepreneurship team in Jiangsu Province,National Basic Research Program of China (No. 2014CB745000), and National Programme on Global Change and Air-Sea Interaction (No. GASI- 03-IPOVAI-05). Yu Liu is supported by State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology Chinese Academy of Sciences (LTO1407).
关键词 mesoscale eddy Eastern China Sea altimetrydata KUROSHIO mesoscale eddy, Eastern China Sea, altimetrydata, Kuroshio
  • 相关文献

参考文献1

二级参考文献2

共引文献12

同被引文献28

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部