期刊文献+

基于话题特征词的网络舆情参与者情感演化分析 被引量:18

Analysis on the Feature Words Based Evolution of Netizens' Sentiments in Network Public Topics
下载PDF
导出
摘要 网络舆情参与者对舆情事件情感指向的清晰定位,可以为舆情事件主体或监管部门准确掌握民众关注焦点、制定有效的网络舆情引导措施提供科学的参考。使用PLSA模型提取网络舆情话题及其特征词,结合TF-IDF修正话题特征词;基于已经提取到的话题文本特征词,构建对应的情感词表,并应用How Net相似度算法计算每个情感词对应的正负情感倾向值;综合考虑特征词对应的所有情感词,计算得出特征词的情感值,对舆情参与者的情感指向及变化进行准确定位。 The research on the evolution of netizens sentiments provided theoretical basis for relevant organizations to understand the neti- zens sentiments of the topics they were focusing on and to make effective opinion guidance of the network public topics. This paper used the PLSA model to extract the topics and the text-words matrixes after segmenting the texts. Combining with the TF-IDF model and the PLSA model, the paper accurately identified the sub topics and the feature words. Based on the text-words matrixes which had been ex- tracted before, this paper constructed the sentiment vocabularies. The application of similarity algorithm HowNet helped us to calculate the sentiment value of each word from the semantic angle, being positive or negative. Taking all of the feature words into consideration, this paper calculated the netizens sentiments of each feature word in the network public topics.
出处 《情报杂志》 CSSCI 北大核心 2015年第11期117-122,144,共7页 Journal of Intelligence
基金 国家自然科学基金"基于情景演化的数字化应急预案动态生成机制研究"(编号:7117111) 江苏省社会科学基金"大数据时代基于话题演化视角的网络舆情监控与应对路径研究"(编号:15TQB004)
关键词 网络舆情 话题 特征词 情感分析 network public opinion topic feature words feeling orientation
  • 相关文献

参考文献19

  • 1Peter D Tumey. Thumbs Up or Thumbs Down? Semantic Orien- tation Applied to Unsupervised Classification of Reviews [ C ]. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. 2002 : 417-424. 被引量:1
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3Xiaojun Wan. Using Bilingual Knowledge and Ensemble Tech- niques for Unsupervised Chinese Senthnent Analysis[C]. EMN- LP'08, October, Honolulu. 2008 : 1133-1142. 被引量:1
  • 4Bin Wei, Christopher Pal. Cross Lingual Adaptation: An Exper- iment on Sentiment Classification [ C ]. ACL' 10, July 11 - 16, Uppsala, Sweden. 2010 : 739-748. 被引量:1
  • 5徐军,丁宇新,王晓龙.使用机器学习方法进行新闻的情感自动分类[J].中文信息学报,2007,21(6):95-100. 被引量:107
  • 6蔡健平,林世平.基于机器学习的词语和句子极性分析[C].第三届全国信息检索与内容安全学术会议,2007:829-834. 被引量:1
  • 7王根,赵军.基于多重标记CRF的句子情感分析研究[c].全国第九届计算语言学学术会议,2007:600-605. 被引量:1
  • 8党蕾,张蕾.一种基于知网的中文句子情感倾向判别方法[J].计算机应用研究,2010,27(4):1370-1372. 被引量:21
  • 9Bo P, Lillian L, Shivakumar V. Thumbs up.'? Sentiment Classi- fication Using Machine I_e.aming Techniques [ C ]. In: Proceed- ings of EMNLP. 2002. 被引量:1
  • 10左维松..规则和统计相结合的篇章情感倾向性分析研究[D].郑州大学,2010:

二级参考文献116

  • 1张桂宾.相对程度副词与绝对程度副词[J].华东师范大学学报(哲学社会科学版),1997,29(2):92-96. 被引量:78
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:120
  • 4TURNEY P,LITTMAN M.Measuring praise and criticism:inference of semantic orientation from association[J].ACM Trans on Information Systems,2003,21(4):315-346. 被引量:1
  • 5蔡健平,王琳琳,林世平.基于机器学习的词语和句子极性分析[C]//中国人工智能学会第12届全国学术年会论文集:上集.北京:北京邮电大学出版社,2007. 被引量:2
  • 6熊德兰,王爽,张泊平.基于HowNet的句子褒贬倾向性计算[C]//中国人工智能学会第12届全国学术年会论文集:上集.北京:北京邮电大学出版社,2007. 被引量:1
  • 7Tumey P,Littman M.Measuring praise and criticism:Inference of semantic orientation from association[J].ACM Transactions on Information Systems, 2003,21 (4) : 315-346. 被引量:1
  • 8Andrea E,Fabrizio S.Determining the semantic orientation of terms through gloss classification[C]//Proceedings of CIKM-05,the ACM SIGIR Conference on Information and Knowledge Management, 2005 : 617-624. 被引量:1
  • 9Pang Bo,Lee Lillian,Vaithyanathan S.Thumbs up sentiment classification using machine learning techniques[C]//Proceedings of the 2002 Conference on Empirical Methods in Natural Langnage Processing, 2002. 被引量:1
  • 10Yuen RWM,Chan T Y W.Morpheme-based derivation of bipolar semantic orientation of Chinese words[C]//Proceedings of the 20th International Conference on Computational Linguistics(COL IN G- 2004), 2004 : 1008-1014. 被引量:1

共引文献512

同被引文献244

引证文献18

二级引证文献214

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部