期刊文献+

带Markovian跳的随机非自治Logistic系统持久性

The permanence on stochastic non-autonomous Logistic system with Markovian jump
下载PDF
导出
摘要 研究一类带Markovian跳的随机非自治Logistic种群模型,在种群内部竞争制约系数受到白噪声扰动情况下,运用指数鞅不等式技巧,揭示了该种群系统在Markovian切换状态下弱持久生存的充分性条件.最后,通过数值模拟验证了主要结果. This paper considers a type of disturbance related with intraspecific interaction on non- autonomous Logistic competitive system in random environments. By using Doob's martingale inequalities method, some sufficient conditions for weak persistence on system with Markovian switching are established. Finally, numerical simulation is carried out to support the results.
作者 王一女
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2015年第6期10-13,共4页 Journal of Northwest Normal University(Natural Science)
基金 辽宁省自然科学基金资助项目(1412085MA02) 辽宁省教育厅科学研究项目(ZH2015214)
关键词 Markovian跳 Logistic系统 BROWNIAN运动 弱持久性 Markovian jumps Logistic model Brownian motion weak persistent
  • 相关文献

参考文献12

  • 1TSOULARIS A, WALLAC J. Analysis of Logistic growth models [ J ]. Mathematical Biosciences, 2002, 179(1): 21. 被引量:1
  • 2BIRCH C P D. A new generalized Logistic sigmoid growth equation compared with the richards growth equation[J]. Annals of Botany, 1999, 83 (6): 713. 被引量:1
  • 3GAED T. Persistence in stochastic food web models [J]. JBullMathBio, 1984, 46: 357. 被引量:1
  • 4GARD T. Stability for multispecies population models in random environments [J]. Nonl Anal, 1986, ll}: 1411. 被引量:1
  • 5LI X Y, MAO X R. Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation[J]. Discrete and Continuous Dynamical Systems, 2009, 24(2) : 523. 被引量:1
  • 6ZHU C, YIN G. On competitive Lotka-Volterra model in random environments [J]. J Math Anal Appl, 2009, 357(1) 154. 被引量:1
  • 7LI X Y, GRAY A, JIANG D Q, et al. Sufficient and necessary conditions of stochastic permanence and extinction for stochastic Logistic populations under regime switching[J], j Math Anal Appl, 2011, 376(1) .. 11. 被引量:1
  • 8LUO Q, MAO X R. Stochastic population dynamics under regime switching [J]. J Math Anal Appl, 2007, 334; 69. 被引量:1
  • 9LIU M, WANG K. Stationary distribution, ergodicity and extinction of a stochastic generalized logistic system[J]. Appl Math Letters, 2012, 25.- 1980. 被引量:1
  • 10JIANG D Q, SHI N Z, LI X Y. Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation [ J]. J Math Anal Appl, 2008, 340: 588. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部