期刊文献+

AH-SIBV双蠕虫交互模型的动力学分析

Dynamic Analysis of AH-SIBV Two-Worms Interactive Model
原文传递
导出
摘要 基于传染病动力学建模方法,综合性地研究了双蠕虫交互的AH-SIBV传播模型.利用微分方程定性理论对模型进行了分析和谱半径理论求出了模型的基本再生数,并利用李雅普诺夫函数和劳斯-霍尔维茨稳定性判据证明了模型的双平衡点在可行域内的全局渐进稳定性.研究了双蠕虫交互的传播规律,得到控制蠕虫传播的阈值.最后,MATLAB仿真实验结果验证了理论分析结果,证明了本模型的正确性、有效性和实用性,为采取有效措施控制蠕虫的大规模传播提供了有价值的理论依据. Based on the dynamic epidemical models,it comprehensively studies a two-worms interactive propagation model. By using the qualitative theory of differential equation,the propagation dynamics of worms is researched. It gets the model's basic reproduction number by using the theory of spectral radius,and proves the globally asymptotical stability of the two equilibrium by using Lyapunov functions and Routh- Hurwitz stability criterion. The propagation laws of two-worms interaction are discussed,and the threshold of controlling worms is gained. Finally,MATLAB numerical simulation verifies our theoretical results and proves the validity,effectiveness and practicability of this model,providing valuable theoretical basis for taking effective measures to control the large-scale propagation of worms.
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第6期24-31,共8页 Journal of Fujian Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(61202450 U1405255) 福州市科技局项目(2013-G-84) 福建师范大学创新研究团队(IRTL1207)
关键词 传染病动力学 基本再生数 平衡点 全局渐进稳定 阈值 dynamic epidemical models basic reproduction number equilibrium globally asymptotical stability threshold
  • 相关文献

参考文献16

  • 1ZHENG X,LI T,FANG Y.Strategy of fast and light-load cloud-based proactive benign worm countermeasure technology to contain worm propagation[J].The Journal of Supercomputing,2012,62(3):1451-1479. 被引量:1
  • 2BARTHéLemy M,BARRAT A,PASTOR-SATORRAS R,et al.Velocity and hierarchical spread of epidemic outbreaks in scale-free networks[J].Physical Review Letters,2004,92(17):178701. 被引量:1
  • 3ZOU C C,GONG W,TOWSLEY D.Worm propagation modeling and analysis under dynamic quarantine defense[C]//Proceedings of the 2003 ACM workshop on Rapid malcode.ACM,2003:51-60. 被引量:1
  • 4YAN X,ZOU Y.Optimal internet worm treatment strategy based on the two-factor model[J].ETRI Journal,2008,30(1):81-88. 被引量:1
  • 5CASTELLANO C,PASTOR-SATORRAS R.Thresholds for epidemic spreading in networks[J].Physical Review Letters,2010,105(21):218701. 被引量:1
  • 6叶晓梦,杨小帆.基于两阶段免疫接种的SIRS计算机病毒传播模型[J].计算机应用,2013,33(3):739-742. 被引量:19
  • 7MISHRA B K,JHA N.SEIQRS model for the transmission of malicious objects in computer network[J].Applied Mathematical Modelling,2010,34(3):710-715. 被引量:1
  • 8GAN C,YANG X,LIU W,et al.A propagation model of computer virus with nonlinear vaccination probability[J].Communications in Nonlinear Science and Numerical Simulation,2014,19(1):92-100. 被引量:1
  • 9PANDEY S K,MISHRA B K,SATPATHY P K.A distributed time delay model of worms in computer network[J].Networking and Communication Engineering,2011,3(6):441-447. 被引量:1
  • 10田雪颖,刘衍珩,孙鑫,王亚洲,林佳佳.一种动态的移动社交网络拓扑模型[J].计算机工程,2014,40(9):124-129. 被引量:3

二级参考文献18

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部