期刊文献+

基于图形处理器的可变形部件模型算法的并行化

Parallelization of deformable part model algorithm based on graphics processing unit
下载PDF
导出
摘要 目前目标识别领域,在人体检测中精确度最高的算法就是可变形部件模型(DPM)算法,针对DPM算法计算量大的缺点,提出了一种基于图形处理器(GPU)的并行化解决方法。采用GPU编程模型OpenCL,对DPM算法的整个算法的实现细节采用了并行化的思想进行重新设计实现,优化算法实现的内存模型和线程分配。通过对Open CV库和采用GPU重新实现的程序进行对比,在保证了检测效果的前提下,使得算法的执行效率有了近8倍的提高。 At present, in the field of target recognition, the highest accuracy algorithm is the Deformable Part Model (DPM) for human detection. Aiming at the disadvantage of large amount of calculation, a parallel solution method based on Graphics Processing Unit (GPU) was proposed. In this paper, with the GPU programming model of OpenCL, the details of the whole DPM algorithm were implemented by the parallel methods, and optimization of the memory model and threads allocation was made. Through the comparison of the OpenCV library and the GPU implementation, under the premise of ensuring the detection effect, the execution efficiency of the algorithm was increased by nearly 8 times.
出处 《计算机应用》 CSCD 北大核心 2015年第11期3075-3078,3129,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(60970012) 高等学校博士学科点专项科研博导基金资助项目(20113120110008) 上海重点科技攻关项目(14511107902) 上海市工程中心建设项目(GCZX14014) 上海智能家居大规模物联共性技术工程中心项目(GCZX14014) 上海市一流学科建设项目(XTKX2012) 沪江基金研究基地专项(C14001)
关键词 可变形部件模型 图形处理器 OPENCL 人体检测 Deformable Part Model (DPM) Graphics Processing Unit (GPU) OpenCL human detection
  • 相关文献

参考文献11

  • 1FELZENSZWALB P F, GIRSHICK R B, MCALLESTE D, et al. Object detection with discriminatively trained part-based models [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9):1627-1645. 被引量:1
  • 2GADESKI E, FARD H O, BORGNE H L. GPU deformable part model for object recognition[J]. Journal of Real-Time Image Processing, 2014:1-13. 被引量:1
  • 3DALAL N, TRIGG B. Histograms of oriented gradients for human detection[C]// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2005, 1: 886-893. 被引量:1
  • 4CHEN Y, LI S, LIN X. Fast hog computation based on CUDA [C]// Proceedings of the 2011 IEEE International Conference on Computer Science and Automation Engineering. Piscataway: IEEE, 2011, 4: 748-751. 被引量:1
  • 5PEDERSOLI M, VEDALDI A, CONZALEZ J. A coarse-to-fine approach for fast deformable object detection[C]// Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2011: 1353-1360. 被引量:1
  • 6HIRABAYASHI M, KATO S, EDAHIRO M, et al. GPU implementations of object detection using HOG features and deformable models[C]// Proceedings of the 2013 IEEE 1st International Conference on Cyber-Physical Systems, Networks, and Applications. Piscataway: IEEE, 2013: 106-111. 被引量:1
  • 7AMIT Y, KONG A. Graphical templates for model registration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(3): 225-236. 被引量:1
  • 8熊聪,王文武.基于DPM模型的行人检测技术的研究[J].电子设计工程,2014,22(23):172-173. 被引量:4
  • 9尹雪聪..基于可变形部件模型的人脸检测方法研究[D].西安电子科技大学,2012:
  • 10MUNSHI A, GASTER B R, MATTSON T G, et al. OpenCL编程指南[M]. 苏金国, 李璜, 杨健康, 译. 北京:机械工业出版社,2013:110-130. 被引量:1

二级参考文献5

  • 1Hare A.Handbook of small group research[M].Macmillan, 1962. 被引量:1
  • 2Moussaid M,Perozo N,Gamier S, et al.The walking behaviour of pedestrian social groups and its impact on crowd dynamics[R].PLoS ONE,2010,5(4):e 10047. 被引量:1
  • 3Felzenszwalb P,GrishickR B, McAllister D,et al.Object detec- tion with discriminatively trained partbased models[C]//IEEE Trans. Pattern Anal. Mach. Intell.,2010(32):1627-1645. 被引量:1
  • 4Dalai N,Triggs B.Histograms of oriented gradients for human Detection [C]//IEEE Computer Society Conference on Com- puter Vision and Pattern Recognition,San Diego,CA,2005 886-893. 被引量:1
  • 5卢虎,李彦,肖颖.支持向量机理论及其应用[J].空军工程大学学报(自然科学版),2003,4(4):89-91. 被引量:9

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部