期刊文献+

基于UKF的共轴式无人直升机模型辨识 被引量:3

Identification of unmanned coaxial helicopter model based on UKF
原文传递
导出
摘要 建立了共轴式无人直升机系统非线性模型,并针对其非线性强,不同飞行模态下气动参数差异等问题,将无迹卡尔曼滤波(UKF)引入共轴式直升机系统非线性模型辨识,不但避免了直升机线性模型仅仅适用于悬停模态的局限性,同时为直升机系统在线自适应控制提供了基础条件,使得共轴式无人直升机自主全包线飞行成为可能.以北京航空航天大学FH-1共轴式无人直升机为例进行了仿真辨识实验.实验结果表明基于该方法的共轴式直升机在线非线性模型辨识不依赖于参数初值的选取,模型参数能在10s内收敛,各状态量辨识精度达到80%以上,明显高于传统的预报误差法(PEM),具有一定的实用性. Nonlinear model of the unmanned coaxial helicopter system was built, and on account of considering its strong nonlinear character, as well as the aerodynamic parameters were variable under different flight modes, the unscented Kalman filter (UKF) was intro- duced to solve the nonlinear model identification problem of coaxial helicopter. It did not on- ly avoid the limitations that linear model was only appropriate to hover modes of helicopter model, but also provided the basis for the online adaptive control of helicopter system, in which autonomous unmanned coaxial helicopter's full envelope flight could be possible. Iden- tification of the FH-1 unmanned coaxial helicopter developed by Beijing University of Aero- nautics and Astronautics was simulated by the approach and the predictive error method (PEM). Simulation experiment results show that the online identification of coaxial helicop- ter nonlinear system based on UKF does not depend on the selection of initial parameters, parameters can converge within the validity period of 10s; and the accuracy of identification reached 80%, which is higher than the classical PEM, so it has a certain practicality.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2015年第10期2523-2530,共8页 Journal of Aerospace Power
关键词 无迹卡尔曼滤波 非线性系统 无人直升机 共轴式直升机 在线辨识 unscented Kalman filter nonlinear system unmanned helicopter coaxial helicopter online identification
  • 相关文献

参考文献18

二级参考文献114

  • 1李萍,庄开莲,李静.国外直升机旋翼翼型研究综述[J].直升机技术,2007(3):103-109. 被引量:13
  • 2曾洪江,胡继忠.一种新的自由涡尾迹计算方法[J].航空学报,2004,25(6):546-550. 被引量:6
  • 3王适存.共轴式直升机的双旋翼气动干扰问题[A]..第十一届全国直升机年会论文集[C].山东威海,1995.. 被引量:1
  • 4约翰逊w著 孙如林译.直升机理论[M].北京:航空工业出版社,1986.. 被引量:1
  • 5Mettler B. Modeling small-scale unmanned rotorcraft for advanced flight control design[D]. Pittsburgh, USA: Carnegie Mellon University, 2001. 被引量:1
  • 6Kim S K. Modeling, identification, and trajectory planning for a model-scale helicopter[D]. Michigan, USA: The University of Michigan, 2001. 被引量:1
  • 7Smith C B, Wereley N M. Damping identification in helicopter rotor system[C]//Annual Forum Proceedings of the American Helicopter Society. Alexandria, VA, USA: AHS, 1998: 391- 407. 被引量:1
  • 8Akramizadeh A, Farjami A A, Khaloozadeh H. Nonlinear Hammerstein model identification using genetic algorithm[C]//IEEE International Conference on Artificial Intelligence Systems. Piscataway, NJ, USA: IEEE, 2002: 351-356. 被引量:1
  • 9Liu C L, Liu J Z, Niu Yu G, et al. The application of genetic algorithm in model identification[C]//IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering. Piscataway, NJ, USA: IEEE, 2002: 1261-1264. 被引量:1
  • 10Zhao Z G, Lu T S. GA-based evolutionary identification of model structure for small-scale robot helicopter systems[C]//7th International Workshop on Embedded Systems - Modeling, Technology and Applications. Dordrecht, Netherlands: Springer, 2006: 149-158. 被引量:1

共引文献269

同被引文献13

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部