期刊文献+

基于EEMD排列熵的高速列车转向架故障特征分析 被引量:7

Fault Diagnosis of High Speed Train Bogie Based on EEMD and Permutation Entropy
下载PDF
导出
摘要 高速列车转向架关键部件发生机械故障会体现在车体和转向架的振动信号中,为了从监测数据中提取非线性特征参数用于转向架故障状态的反演识别,提出基于聚合经验模态分解排列熵的特征分析方法。首先,对振动信号进行聚合经验模态分解,得到一系列窄带本征模态函数;然后,对原信号和本征模态函数分别计算排列熵值,组成多尺度的复杂性度量特征向量;最后,将高维特征向量输入最小二乘支持向量机分类识别出转向架的工作状态。仿真实验结果表明,该方法在运行速度为200km/h时,多个通道达到95%以上的识别率,验证了通过聚合经验模态分解排列熵对高速列车转向架机械故障诊断的可行性。 The vibration signals of the body and bogie of a high speed train are always affected by the bogie′s mechanical faults,which can be predicted using the nonlinear features extracted from the monitoring data.A new feature-analysis method is proposed based on ensemble empirical mode decomposition(EEMD)and permutation entropy.First,fault vibration signals are decomposed into a series of narrow band intrinsic mode functions(IMFs)using EEMD.Then,the permutation entropy of these IMFs and initial signals are calculated as multi-scale complexity measure feature vectors.Finally,the feature vectors are transformed in a least-squares support vector machine to classify and identify the operating conditions.Simulation and experimental results show that the recognition rate is above 95% under a running speed of200km/h,which proves the feasibility of this mechanical fault diagnosis method.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2015年第5期885-891,991,共7页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金重点资助项目(61134002) 中央高校基本科研业务费专项资金资助项目(2682015CX025)
关键词 高速列车转向架 特征提取 聚合经验模态分解 排列熵 最小二乘支持向量机 high speed train bogie feature extraction ensemble empirical mode decomposition(EEMD) permutation entropy(PE) least squares support vector machine(LSSVM)
  • 相关文献

参考文献16

  • 1蒋贵山.提高动车组运行安全性的转向架关键检修技术探讨[J].铁道车辆,2013,51(5):21-24. 被引量:5
  • 2Hayashi Y, Tsunashima H, Marumo Y. Fault detec tion on railway vehicle suspension systems using mul tiple-model approach[J]. Journal of Mechanical Sys tems for Transportaion and Logistics, 2008,4 (1) : 88- 99. 被引量:1
  • 3大庭拓也,蔡千华.基于振动分析的新干线转向架的状态监视[J].国外铁道车辆,2013(3):32-40. 被引量:5
  • 4王小亮,李立,张卫华.高速列车垂向振动的模拟器再现方法研究[J].振动.测试与诊断,2009,29(1):101-104. 被引量:9
  • 5Bin G F, Gao J J, Li X J, et al. Early fault diagnosis of rotating machinery based on wavelet packets-Empir- ical mode decomposition feature extraction and neural network[J]. Mechanical Systems and Signal Process- ing, 2012, 27(2):696-711. 被引量:1
  • 6Lei Yaguo, He Zhengjia, Zi Yanyang. EEMD method and WNN for fault diagnosis of locomotive roller bear- ings[J]. Expert Systems with Applications, 2011, 38 (6) : 7334-7341. 被引量:1
  • 7An Xueli, Jiang Dongxiang,Li Shaohua, et al. Appli- cation of the ensemble empirical mode decomposition and Hilbert transform to pedestal looseness study of direct-drive wind turbine[J]. Energy, 2011, 36 (9) : 5508-5520. 被引量:1
  • 8Xiang Shuiying, Wei Pan, Yan Lianshan, et al. Quan- tifying chaotic unpredictability of vertical-cavity sur- face-emitting lasers with polarized optical feedback via permutation entropy [J ]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17 (5) : 1212- 1219. 被引量:1
  • 9冯辅周,饶国强,司爱威,吴广平.排列熵算法研究及其在振动信号突变检测中的应用[J].振动工程学报,2012,25(2):221-224. 被引量:49
  • 10Wu Zhaohua, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method I-J]. Advances in Adaptive Data Analysis,2009, 1(1) : 1-41. 被引量:1

二级参考文献61

共引文献180

同被引文献48

引证文献7

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部