期刊文献+

热工过程参数的改进逐维黄金分割法辨识 被引量:1

Identification of thermal process parameters by improved dimension-by-dimension golden section method
下载PDF
导出
摘要 针对基于群体智能算法的热工过程参数辨识存在随机性强、收敛慢、耗时长的不足,提出了一种快速辨识方法。在仿真验证辨识目标函数随各个参数变化呈单峰性后,将黄金分割法与坐标轮换法相结合,形成逐维黄金分割法,并通过选取最优初始点和提高寻优精度等方法对其进行改进;基于现场数据分别采用粒子群优化算法、逐维黄金分割法及其改进算法对风煤比-过氧量模型的过程参数进行了辨识比较。结果表明,改进后的逐维黄金分割法在快速性、精确性上明显优于粒子群算法和逐维黄金分割法,其更适合于热工过程参数的在线辨识,从而为热工控制系统调节参数的在线快速优化提供条件。 The thermal process parameters identification by swarm intelligence algorithm has disadvantages of strong randomness,slow convergence and time-consuming.Against this problem,this paper proposes a quick identification method.First of all,simulation was carried out to verify that the identification problem's target function shows unimodal characteristics to each parameter.Then,combing the golden section method with coordinate alternation method,the author proposed the dimension-by-dimension golden section method,and improved it by selecting the optimal initial point and enhancing the optimization accuracy.Fi-nally,on the basis of the field tests data,the particle swarm optimization (PSO)algorithm,dimension-by-dimension golden section method and its improved method were applied to identify the process parameters of air/coal ratio and excess oxygen content model.The results show that,the improved dimension-by-di-mension golden section method is superior to the other two methods in quickness and accuracy,which is more suitable for online identification of the thermal process parameters,so it provides the conditions for adj usting parameters'online optimization in thermal control system.
出处 《热力发电》 CAS 北大核心 2015年第10期68-71,76,共5页 Thermal Power Generation
关键词 热工过程 参数辨识 逐维黄金分割法 坐标轮换法 粒子群优化算法 风煤比 过氧量 thermal process parameter identification dimension-by-dimension golden section method coor-dinate alternation method particle swarm algorithm air to coal ratio excess oxygen content
  • 相关文献

参考文献12

二级参考文献64

共引文献181

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部