期刊文献+

萤火虫算法参数研究 被引量:4

Parameter Study on Firefly Algorithm
下载PDF
导出
摘要 萤火虫算法各参数设定对计算结果有很大影响,必须取合理的参数值才能达到目的,文中先采用水平试验得到最优解出现次数最多的组合,然后接着将萤火虫数n固定,对步长因子和光照强度吸收系数采用枚举法得到一系列最优值组合,最后对结果进行分析得到了FA算法的参数推荐取值或取值范围,有利于FA萤火虫算法在各类优化问题中更广泛的应用。 The parameters of the firefly algorithm have great influence on the calculation results. So we need to study the parameters. Firstly,the optimal combination got by levels of uniform experiment. Secondly,curve fitting of the parameters and analysis results. Finally,let the number of fireflies unchanged and used the enumeration method to test the alpha and gamma,got a series of data,getting the parameter value or range of values through the analysis of the data,is conducive to the application of firefly algorithm in various fields.
作者 李一玄
出处 《物流工程与管理》 2015年第9期195-197,共3页 Logistics Engineering and Management
关键词 萤火虫算法 参数研究 水平试验 枚举法 firefly algorithm parameter study level test enumeration method
  • 相关文献

参考文献6

  • 1汪定伟等编著..智能优化方法[M].北京:高等教育出版社,2007:309.
  • 2彭喜元,彭宇,戴毓丰.群智能理论及应用[J].电子学报,2003,31(z1):1982-1988. 被引量:79
  • 3Yang Xin-she.Nature-inspired Metaheuristic Algorithms[M].UK:Luniver Press,2008:83-96. 被引量:1
  • 4Theofanis Apostolopoulos,Aristidis Vlachos.Application of the firefly algorithm for solving the economic emissions load dispatch problem[J].International Journal of Combinatorics,2011,27(10):140-163. 被引量:1
  • 5Mohammad Asif Zaman,Md.Abdul Matin.Nonuniformly spaced linear antenna array design using firefly algorithm[J].International Journal of Microwave Science and Technology,2012,8(36):40-48. 被引量:1
  • 6Yang Xin-she.Multiobjective Firefly Algorithm for continuous optimization[J].Engineering With Computers,2013,29(10):175-184. 被引量:1

二级参考文献53

  • 1[11]Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization [ A ].Proc. Congress on Evolutionary Computation[ C ]. Seonl, Korea. Piscataway, NJ: IEEE Service Center,27 - 30 May 2001.1.101 - 106. 被引量:1
  • 2[12]Jacques Riget,Jakob S Vesterstrom. A diversity-guided particle swarm optimization-the ARPSO [ DB/OL ]. http://citeseer. nj. nec. com/riget02diversityguided. html. 被引量:1
  • 3[13]Lovbjerg M, Krink T. Extending particle swarms with self-organized criticality[ A ]. Proceedings of the Fourth Congress on evolutionary computation (CEC-2002) [ C ]. Honolulu, HI USA, 2002.2. 1588 -1593. 被引量:1
  • 4[14]Al-kazemi B, Mohan C K. Multi-phase generalization of the particle swarm optimization algorithm[A]. Proceedings of the 2002 Congress on Evolutionary Computation[ C ]. Honolulu, HI USA, 12 - 17 May 2002.1.489 - 494. 被引量:1
  • 5[15]Krink T, Vesterstrom J S, Riget J. Particle swarm optimisation with spatial particle extension[ A]. Proceedings of the Fourth Congress on Evolutionary Computation (CEC-2002) [ C ]. Honolulu, HI USA, 2002.2.1474- 1479. 被引量:1
  • 6[16]Kennedy J, Mendes R. Population structure and particle swarm performance[ A]. Proceedings of the IEEE Congress on Evolutionary Computation ( CEC 2002 ) [ C ]. Honolulu, HI USA, 12 - 17 May 2002.2.1671- 1676. 被引量:1
  • 7[17]M Lvbjerg, T K Rasmussen, T Krink. Hybrid particle swarm optimiser with breeding and subpopulations[ A ]. Proceedings of the Genetic and Evolutionary Computation Conference [ C ]. San Francisco, California,2001.469 - 476. 被引量:1
  • 8[18]Xiaohui Hu, Eberhart,R C.Adaptive particle swarm optimization:detection and response to dynamic systems[ A ]. Proceedings of the 2002 Congress on Evolutionary Computation[ C ]. Honolulu, HI USA, 2002.2.1666 - 1670. 被引量:1
  • 9[19]M Dorigo, L M Gambardella. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997,1(1 ) :53 - 66. 被引量:1
  • 10[20]T Stutzle, H H Hoos. MAX MIN Ant system[ J]. Journal of Future Generation Computer Systems,2000,16:889 - 914. 被引量:1

共引文献78

同被引文献43

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部