期刊文献+

Frequency-tunable transmon in a three-dimensional copper cavity

Frequency-tunable transmon in a three-dimensional copper cavity
下载PDF
导出
摘要 We have realized a frequency-tunable transmon in a three-dimensional cooper cavity using a direct current supercon- ducting quantum interference device. Both the transition frequency of the transmon and the frequency of the dressed cavity can be varied with the applied external flux bias, which are well consistent with the theoretical model. The range of the variable transition frequency is from 5.188 GHz to 7.756 GHz. The energy relaxation time of the transmon is hundreds of nanoseconds. We have realized a frequency-tunable transmon in a three-dimensional cooper cavity using a direct current supercon- ducting quantum interference device. Both the transition frequency of the transmon and the frequency of the dressed cavity can be varied with the applied external flux bias, which are well consistent with the theoretical model. The range of the variable transition frequency is from 5.188 GHz to 7.756 GHz. The energy relaxation time of the transmon is hundreds of nanoseconds.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期81-84,共4页 中国物理B(英文版)
基金 supported by the National Basic Research Program of China(Grant Nos.2011CB922104 and 2011CBA00200) the National Natural Science Foundation of China(Grant No.11474154) the Natural Science Foundation of Jiangsu Province,China(Grant No.BK2012013) the Priority Academic Program Development of Jiangsu Higher Education Institutions,China the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120091110030) the Dengfeng Project B of Nanjing University,China
关键词 superconducting qubit three-dimensional transmon tunable transmon dc-superconducting quantum interference device superconducting qubit, three-dimensional transmon, tunable transmon, dc-superconducting quantum interference device
  • 相关文献

参考文献15

  • 1You J Q and Nori F 2011 Nature 474 589. 被引量:1
  • 2Clarke J and Wilhelm F K 2008 Nature 453 1031. 被引量:1
  • 3Paik H, Schuster D I, Bishop L S, Kirchmair G, Gatelani G, Sears A P, Johnson B R, Reagor M J, Frunzio L, Glazman L I, Girvin S M, Devoret M H and Schoelkopf R J 2011 Phys. Rev. Lett. 107 240501. 被引量:1
  • 4Zhong Y P, Li C Y, Wang H H and Chen Y 2013 Chin. Phys. B 22 110313. 被引量:1
  • 5Rigetti C, Gambetta J M, Poletto S, Plourde B L T, Chow J M, Corcoles A D, Smolin J A, Merkel S T, Rozen J R, Keefe G A, Rothwell M B, Ketchen M B and Steffen M 2012 Phys. Rev. B 86 100506. 被引量:1
  • 6Zhao H, Li T F, Liu Q C, Zhang Y S, Liu J S and Chen W 2014 Acta Phys. Sin. 63 220305 (in Chinese). 被引量:1
  • 7Riste D, Dukalski M, Watson C A, De Lange G, Tiggelman M J, Blanter Y M, Lehnert K W, Schouten R N and DiCarlo L 2013 Na- ture 502 350. 被引量:1
  • 8Poletto S, Gambetta J M, Merkel S T, Smolin J A, Chow J M, Corcoles A D, Keefe G A, Rothwell M B, Rozen J R, Abraham D W, Rigetti C and Steffen M 2012 Phys. Rev. Lett. 109 240505. 被引量:1
  • 9Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319. 被引量:1
  • 10Clarke J and Braginski A 12004 The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems (Vol. 1) (Weinheim: Wiley-VCH) pp. 43-50. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部