期刊文献+

基于引导滤波的多图谱医学图像分割 被引量:6

Medical image segmentation based on guided filtering and multi-atlas
下载PDF
导出
摘要 目的为了有效的利用图谱的先验信息和待分割图像的灰度信息,并在融合标号图像的过程中校正配准引起的误差,得到光滑、准确的分割结果,提出了一种新的基于引导滤波的多图谱医学图像分割方法。方法本文将多图谱配准与引导滤波相结合。该方法包含4个部分:第一部分为多图谱配准,通过配准将图谱中存储的形状先验信息映射到待分割图像;第二部为标号融合,利用配准的相似性作为权重,将形变后的标号图像融合在一起;第三部分为引导滤波,利用引导滤波引入待分割图像的灰度信息,可以校正配准引起的误差;最后通过阈值处理,得到最终的分割结果。结果对15例脑部MR图像数据中的海马体进行分割实验,左、右海马体分别达到了86%及87.4%的分割精度,与传统的标号融合算法相比,平均分割精度提升了2.4%。结论本文方法结合多配谱配准与引导滤波的优势,提高了海马的分割精度,并得到光滑有效的分割精度。 A novel medical automatic image segmentation strategy based on guided filtering and multi- atlas is proposed to achieve accurate, smooth, robust, and reliable segmentation. This framework consists of 4 elements: the multi- atlas registration, which uses the atlas prior information; the label fusion, in which the similarity measure of the registration is used as the weight to fuse the warped label; the guided filtering, which uses the local information of the target image to correct the registration errors; and the threshold approaches used to obtain the segment result. The experimental results showed part among the 15 brain MRI images used to segment the hippocampus region, the proposed method achieved a median Dice coefficient of 86% on the left hippocampus and 87.4% on the right hippocampus. Compared with the traditional label fusion algorithm, the proposed algorithm outperforms the common brain image segmentation methods with a good efficiency and accuracy.
出处 《南方医科大学学报》 CAS CSCD 北大核心 2015年第9期1263-1267,共5页 Journal of Southern Medical University
基金 广东省自然科学基金(2014A030313316) 广州市珠江新星专项基金(2012J2200041)
关键词 图像分割 引导滤波 多图谱配准 图谱先验 标号融合 海马体 image segmentation guided filtering multi-atlas registration atlas prior label fusion hippocampus
  • 相关文献

参考文献18

  • 1Alivisatos AP, Chun M, Church GM, et al. The brain activity map [J]. Science, 2013, 339(6125): 1284-5. 被引量:1
  • 2Manikandan S, Ramar K, Willjuice lruthayarajan M, et al. Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm[J]. Measurement, 2014, 47(47): 558-68. 被引量:1
  • 3Lu XQ, Wu JS, Ren XY, et al. The study and application of the improved region growing algorithm for liver segmentation [J]. Optik, 2014,125(9): 2142-7. 被引量:1
  • 4Bai PR, Liu QY, Li L, et al. A novel region-based level set method initialized with mean shift clustering for automated medical image segmentation[J]. Comput Biol Med, 2013, 43(11): 1827-32. 被引量:1
  • 5Baillard C, Hellier P, Barillot C. Segmentation of brain 3D Mr images using level sets and dense registration[J]. Med Image Anal, 2001,5(3): 185-94. 被引量:1
  • 6Heckemann RA, Hajnal N, Aljabar P, et al. Automatic anatomical brain MRJ segmentation combining label propagation and decision fusion[J]. Neuroimage, 2006, 33(1): 115-26. 被引量:1
  • 7Klein S, Van Der Heide VA, Lips 1M, et al. Automatic segmentation of the prostate in 3D Mr images by Atlas matching using localized mutual information[J]. Med Phys, 2008, 35(4): 1407-17. 被引量:1
  • 8Isgum I, Staring M, Rutten A, et al. Multi-Atlas-Based segmentation with local decision Fusion-Application to cardiac and aortic segmentation in CT scans[J]. IEEE Trans Med Imaging, 2009, 28 (7): 1000-10. 被引量:1
  • 9Jia HJ, Yap PT, Shen DG. Iterative multi-atlas-based multi-image segmentation with tree-based registration[J]. Neuroimage, 2012, 59 (I, SI): 422-30. 被引量:1
  • 10Popescu V, Battaglini M, Hoogstrate WS, et al. Optimizing parameter choice for FSL-Brain Extraction Tool (BET) on 3D T1 images in multiple sclerosis[J]. Neuroimage, 2012, 61(4): 1484-94. 被引量:1

同被引文献67

引证文献6

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部