期刊文献+

基于视觉图像的手指关节角度检测方法及其实现

Finger Joint Angle Detection Method Based on Visual-image and Its Implementation
下载PDF
导出
摘要 常用的手势识别方法受限于有限的二维图像信息,难以从复杂的背景中有效地分割出目标像素,且大多依赖于监督学习的分类方法,只能在有限的手势库中进行选择判定,无法适用于较为精细的手指运动检测。为此,提出一种利用粒子群寻优算法来估计手指关节角度的方法,引入Kinect深度图像优化特征提取,提高检测准确性,通过对手部自由度的分析,引入多个约束条件,减少需要预测和估计的自由度个数。基于粒子群寻优算法,得出最优的预测模型,将手势分类问题转化为手指关节角度变量求解问题。实验结果表明,该方法有效地提高了手势检测中的检测准确率,降低了检测失效的情况。 Traditional methods of gesture recognition are incompetent to detect finger's delicate movement due to poor segmentation effect using 2D images and limited gesture templates through supervised training of classifier.This paper proposes a method of finger joint angle measurement by Particle Swarm Optimization(PSO)algorithm,introduces Kinect depth image to optimize feature extraction and improve accuracy.Through the analysis of hand free degree,it introduces multiple constraints to reduce the degrees of freedom number,optimize PSO to calculate the best model and analyze the measurements,transform the common problems of gesture classification to the variable solution of finger joint angle.Experimental results show that this method can effectively improve the detection accuracy and reduce the situation of detection fault.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第10期221-225,231,共6页 Computer Engineering
基金 浙江省国际科技合作基金资助项目(2012C34G2020027)
关键词 手势识别 深度图像 肤色检测 粒子群优化算法 手指关节角度 gesture recognition depth image skin color detection Particle Swarm Optimization(PSO)algorithm finger joint angle
  • 相关文献

参考文献15

  • 1崔育礼..手势识别若干关键技术研究与应用[D].同济大学,2008:
  • 2Lee J.Interactive Control of Avatars Animated with Human Motion Data[C]//Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques.New York,USA:ACM Press,2002:491-500. 被引量:1
  • 3Wang Xiaoyan,Xia Ming.Hidden-Markov-Modelsbased Dynamic Hand Gesture Recognition[J].Mathematical Problems in Engineering,2012,(10):1-11. 被引量:1
  • 4Wang Menghui.Hand Recognition Using Thermal Image and Extension Neural Network[EB/OL].(2011-10-07).http://www.hindawi.com/journals/mpe/2012/905495. 被引量:1
  • 5曹雏清,李瑞峰,赵立军.基于深度图像技术的手势识别方法[J].计算机工程,2012,38(8):16-18. 被引量:60
  • 6Khoshelham K.Accuracy Analysis of Kinect Depth Data[C]//Proceedings of International Society for Photogrammetry and Remote Sensing.Calgary,Canada:[s.n.],2011:133-138. 被引量:1
  • 7Li Hui,Yang Lei,Wu Xiaoyu,et al.Static Hand Gesture Recognition Based on HOG with Kinect[C]//Proceedings of the 14th International Conference on Intelligent Human-machine Systems and Cybernetics.Washington D.C.,USA:IEEE Press,2012:271-273. 被引量:1
  • 8Oikonomidis I,Kyriazis N,Argyros A.Efficient Modelbased 3d Tracking of Hand Articulations Using Kinect[C]//Proceedings of British Machine Vision Conference.Dundee,UK:[s.n.],2011:1-11. 被引量:1
  • 9Oikonomidis I.Lourakis M.Evolutionary Quasi-random Search for Hand Articulations Tracking[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2014:3422-3429. 被引量:1
  • 10Zhao Wenping,Chai Jinxiang,Xu Yingqing.Combining Marker-based Mocap and RGBD Camera for Acquiring High-fidelity Hand Motion Data[C]//Proceedings of ACM SIGGRAPH Symposium on Computer Animation.New York,USA:ACM Press,2012:33-42. 被引量:1

二级参考文献29

  • 1Kenddy J, Eberhart R. Particle Swarm Optimization[C]//Proc. of IEEE International Conf. on Neural Network. Perth, Australia: [s. n.], 1995: 1943-1948. 被引量:1
  • 2Clerc M, Kennedy J. The Particle Swarm-explosion, Stability, and Convergence in a Multidimensional Complex Space[J]. IEEE Trans. on Evolutionary Computantion, 2002, 6(1): 58-73. 被引量:1
  • 3Eberhart R C, Shi Y. Comparing Inertia Weights and Constriction Factor in Particle Swarm Optimization[C]//Proc. of IEEE CEC’00. [S. 1.]: IEEE Press, 2000: 84-88. 被引量:1
  • 4Shi Y, Eberhart R. Fuzzy Adaptive Particle Swarm Optimiza- tion[C]//Proc. of IEEE Conference on Evolutionary Computation. Seoul, Korea: [s. n.], 2001: 101-106. 被引量:1
  • 5Kelly D,McDonald J,Markham C.A Person Independent System for Recognition of Hand Postures Used in Sign Language[J].Pattern Recognition Letters,2010,31(11):1359-1368. 被引量:1
  • 6Wang Chieh-Chih,Wang Ko-Chih.Hand Posture Recognition Using Adaboost with Sift for Human Robot Interaction[C]//Proc.of International Conference on Advanced Robotics.Jeju Island,Korea:[s.n.],2007. 被引量:1
  • 7Flasinski M,Myslinski S.On the Use of Graph Parsing for Recognition of Isolated Hand Postures of Polish Sign Language[J].Pattern Recognition,2010,43(6):2249-2264. 被引量:1
  • 8Witten I H,Frank E.Data Mining:Practical Machine Learning Tools and Techniques[M].Burlington,USA:Morgan Kaufmann Publishers,2005. 被引量:1
  • 9李亮.机械手对目标物体的抓取[D].成都:西华大学,2008:11. 被引量:1
  • 10GANGANATH N, LEUNG H. Mobile robot localization using odometry and Kinect sensor[ C]//2010 IEEE Interna- tional Conference on Emerging Signal Processing Applications (ESPA). NJ, USA, 2010: 91-94. 被引量:1

共引文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部