期刊文献+

Weak Type Weighted Inequalities for the Commutators of the Multilinear Calderón-Zygmund Operators

Weak Type Weighted Inequalities for the Commutators of the Multilinear Calderón-Zygmund Operators
下载PDF
导出
摘要 For the commutators of multilinear Calder ′on-Zygmund singular integral operators with B MO functions, the weak type weighted norm inequalities with respect to A^P weights are obtained. For the commutators of multilinear Calder ′on-Zygmund singular integral operators with B MO functions, the weak type weighted norm inequalities with respect to A^P weights are obtained.
出处 《Analysis in Theory and Applications》 CSCD 2015年第3期244-252,共9页 分析理论与应用(英文刊)
基金 supported by the Natural Science Foundation of Hebei Province (A2014205069)
关键词 COMMUTATOR multilinear Calderón-Zygmund operator multilinear maximal function weight Commutator,multilinear Calderón-Zygmund operator,multilinear maximal function,weight
  • 相关文献

参考文献8

  • 1M. Christ and J.-L. Journ′e, Polynomial growth estimates for multilinear singular integraloperatrs, ActaMath., 159 (1987), 51–80. 被引量:1
  • 2R. R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singularintegrals, Trans. Amer. Math. Soc., 212 (1975), 315–331. 被引量:1
  • 3R. R. Coifman and Y. Meyer, Commutateurs d’int′egrales singuli`eres et op′erateurs mulitilin′eaires, Ann. Inst. Fourier (Grenoble), 28(3) (1978), 177–202. 被引量:1
  • 4C. Fefferman and E.M. Stein, Hp spaces of several variables, ActaMath., 129 (1972), 137–193. 被引量:1
  • 5L. Grafakos and R. Torres, Multilinear Calder ′on-Zygmund theory, Adv. Math., 165 (2002),124–164. 被引量:1
  • 6L. Grafakos and R. Torres,Maximal operator andweighted norminequalities formultilinearsingular integrals, Indiana Univ. Math. J., 51 (2002), 1261–1276. 被引量:1
  • 7C. E. Kenig and E.M. Stein,Multilinear estimatesand fractional integration,Math. Res. Lett.,6 (1999), 1–15. 被引量:1
  • 8A. K. Lerner, S. Ombrosi, C. P′erez, R. Torres and R. Trujillo-Gonz′alez, New maximal functionsand multiple weights for the multilinear Calder ′on-Zygmund theory, Adv. Math., 220(2009), 1222–1264. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部