期刊文献+

基于分布式ICA-PCA模型的工业过程故障监测 被引量:11

Fault monitoring of industrial process based on distributed ICA-PCA model
下载PDF
导出
摘要 提出基于分布式ICA-PCA(independent component analysis-principal component analysis)模型的工业过程故障监测方法,适合于复杂工业过程难以自动划分子块及过程数据存在非高斯信息的情况。首先,对过程数据进行PCA分解,并在PCA主成分不同的方向上构建不同的子块,把原始特征空间自动划分为不同子空间。然后,对各个子块采用ICA-PCA两步信息提取的策略,提取出高斯信息和非高斯信息,并构建新的统计量和统计限。最后,通过Tennessee Eastman(TE)过程的仿真实验,验证所提出故障监测模型的有效性和可行性。 A fault monitoring method based on distributed independent component analysis-principal component analysis (ICA-PCA) model is proposed, which is suitable for complex industrial process that cannot be divided into several sub-blocks through an automatic way and has non-Gaussian information. Firstly, an initial PCA decomposition is carried out upon the variables of the whole process. By constructing sub-blocks through different directions of PCA principal components, the original feature space can be automatically divided into several sub-feature spaces. In addition, a two step extractions of the ICA-PCA information are carried on upon all sub-blocks in order to extract both Gaussian and non-Gaussian information, establishing the new statistics and their statistic limits. Finally, the simulation of TE process shows that the proposed fault detection model is efficient and feasible.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第11期4546-4554,共9页 CIESC Journal
基金 国家自然科学基金项目(61263010 60904049) 江西省自然科学基金项目(20114BAB211014) 江西省教育厅项目(GJJ14399)~~
关键词 复杂工业过程 自动划分子块 非高斯 ICA-PCA 故障监测 complex industrial process automatic partitioning sub-blocks non-Gaussian ICA-PCA fault monitoring
  • 相关文献

参考文献23

  • 1Nomikos P, MacGregor J F. Monitoring batch processes using multiway principal component analysis [J]. AIChE J., 1994, 40: 1361-1375. 被引量:1
  • 2Nomikos P, MacGregor J F. Multi-way partial least square in monitoring batch processes [J]. Chem. Intell. Lab. Syst., 1995, 30: 97-108. 被引量:1
  • 3Ku W, Storer R H, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis [J]. Chem. Intell. Lab. Syst., 1995, 30: 179-196. 被引量:1
  • 4Bakshi B R. Multiscale PCA with applications to multivariate statistical process monitoring [J]. AIChE J., 1998, 44: 1596-1610. 被引量:1
  • 5Cheng C, Chiu M S. Nonlinear process monitoring using JITL-PCA [J]. Chem. Intell. Lab. Syst., 2005, 76:1-13. 被引量:1
  • 6Kim D, Lee I B. Process monitoring based on probabilistic PCA [J]. Chemom. Intell. Lab. Syst., 2003, 67: 109-123. 被引量:1
  • 7赵忠盖,刘飞.因子分析及其在过程监控中的应用[J].化工学报,2007,58(4):970-974. 被引量:24
  • 8Zhang Y, Ma C. Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS [J]. Chem. Eng. Sci., 2011, 66: 64-72. 被引量:1
  • 9宋冰,马玉鑫,方永锋,侍洪波.基于LSNPE算法的化工过程故障检测[J].化工学报,2014,65(2):620-627. 被引量:24
  • 10Lee J M, Yoo C K, Lee I B. Statistical process monitoring with independent component analysis [J]. J. Process Control., 2004, 14: 467-485. 被引量:1

二级参考文献12

  • 1董纪震 罗鸿烈 等.合成纤维生产工艺学[M].北京:中国纺织出版社,1996.101. 被引量:13
  • 2James C Masson. Acrylic Fiber Technology and Application.New York: M Dekker, 1995. 被引量:1
  • 3Andrej Ziabicki. Fundamentals of Fiber Formation; the Science of Fiber Spinning and Drawing. New York: Wiley, 1976. 被引量:1
  • 4Roychen Joseph, Surekha Devi, Animesh Kumar Rakshit.Viscosity Behaviour of Acrylonitrile-Acrylate Copolymer Solutions in Dimethyl Formide. Polymer International, 1991,26 (2): 89-92. 被引量:1
  • 5Kashyap A K, Kalpagam V, Rami Reddy C. Dilute Solution Properties of Methyl Methacrylate-Acrylonitrile Copolymer (MA1) . Polymer, 1977, 18 (3):878- 882. 被引量:1
  • 6Padhye M R, Karandikar A V. The Effect of Alkali Salt on Solvent Polyacrylonitrile Interaction. J Appl Polym Sci ,1985, 30:667-673. 被引量:1
  • 7Datye K V, Gupta D C. Discolouration in Acrylic Fibers.Synthetic Fibers, 1984, 13 (1): 6--13. 被引量:1
  • 8何曼军 陈维孝 董西侠.高分子物理[M].Shanghai:Fudan University Press,2000.. 被引量:2
  • 9周东华,胡艳艳.动态系统的故障诊断技术[J].自动化学报,2009,35(6):748-758. 被引量:308
  • 10马玉鑫,王梦灵,侍洪波.基于局部线性嵌入算法的化工过程故障检测[J].化工学报,2012,63(7):2121-2127. 被引量:12

共引文献47

同被引文献84

引证文献11

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部