期刊文献+

基于大数据的食源性疾病事件探测与风险评估 被引量:19

Foodborne disease event detection and risk assessment based on big-data
原文传递
导出
摘要 食源性疾病由于其症状轻重不一常被低估,但近年来,食源性疾病的爆发在全国范围内呈上升趋势,准确探测食源性疾病事件并对其进行风险评估有重要意义.本文分别对哨点医院监测数据、食品检测数据和来自互联网的数据建立事件探测模型,实现风险评估,并分析比较模型优劣,最后建立统一的时空框架,引入人口、交通、食品生产等大数据对风险预测结果进行综合集成.通过对某大城市2014年食源性疾病事件的探测结果对比,实证结果表明,综合模型预测的时空精度更高,对防控更具操作性. Foodborne diseases are usually underreported due to its various symptoms. It has emerged to be a critical burden of public health in China. Auto detection of foodborne disease event and risk assessment based on it are helpful to prevent and control its outbreak. We design three different event detection models according to three different kinds of data from disease surveillance system, food detection system and social media. By the integrated spatio-temporal data framework and the imported big-data of population, traffic, and food production and sales, the final model performs better than the isolated ones in spatial and temporal dimensions. This is testified by the results on the data of one city of China in 2014.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2015年第10期2523-2530,共8页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(41371386 91224006) 卫生部行业专项(201302005)
关键词 食源性疾病 大数据 事件探测 风险评估 集成时空框架 foodborne disease big data event detection risk assessment integrated spatio-temporal framework
  • 相关文献

参考文献2

二级参考文献25

  • 1范维澄,袁宏永.我国应急平台建设现状分析及对策[J].信息化建设,2006(9):14-17. 被引量:65
  • 2范维澄.国家突发公共事件应急管理中科学问题的思考和建议[J].中国科学基金,2007,21(2):71-76. 被引量:253
  • 3Raschid L. Information integration and dissemination for disaster data management[C]//Proceedings of the 8th Annual International Conference on Digital Government Research: Bridging Disciplines & Domains, May 20-23, Philadelphia, Pennsylvania, 2007. 被引量:1
  • 4Turban E, Aronson J E, Liang T P. Decision Support Systems and Intelligent Systems[M]. Pearson Prentice Hall, 2008. 被引量:1
  • 5Saleem K, Luis S, Deng Y, et al. Towards a business continuity information network for rapid disaster recovery[C]// Proceedings of the 9th Annual International Conference on Digital Government Research, Montreal, Canada, May 18-21, 2008: 107-116. 被引量:1
  • 6Chang C H, Kayed M, Girgis M R. A survey of web information extraction systems[J]. IEEE Transactions oil Knowledge and Data Engineering, 2006, 18(10): 1411-1428. 被引量:1
  • 7Ahmed K, Elmagarmid, et al. Duplicate record detection: A survey[J]. IEEE Transaction on Knowledge and Data Engineering, 2007, 19(1): 1-16. 被引量:1
  • 8Dong X L, et al. Data fusion: Resolving data conflicts for integration[C]// Proceeding of Very Large Database Endowment, 2009: 1654-1655. 被引量:1
  • 9Kalashnikov D V, Ma Y, Mehrotra S, et al. Modeling and querying uncertain spatial information for situational awareness applications[C]// Proceedings of the 14th Annual ACM International Symposium on Advances in Geographic Information Systems, November 10-11, Arlington, Virginia, USA, 2006. 被引量:1
  • 10Han Q, Venkatasubramanian N. Timeliness-accuracy balanced collection of dynamic context data[J]. IEEE Trans Parallel Distribution System, 2007, 18(2): 158-171. 被引量:1

共引文献420

同被引文献259

引证文献19

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部