期刊文献+

基于手机大数据的城市人口流动分析系统 被引量:15

An urban population flow analysis system based on mobile big data
下载PDF
导出
摘要 分析城市人口流动行为有助于合理分配社会资源,有效应对交通压力、维护社会公共治安等.传统的人工分析方法,如问卷调查、座谈访问等,成本高昂且低效率.智能手机的不断发展与普及在为人们日常生活带来极大便利的同时,所产生的用户移动轨迹数据为有效分析城市人口流动行为提供了可能.然而,海量、低质的轨迹数据给查询分析工作带来了诸多挑战.文中提出了一个分布式人口流动分析框架,采用多节点处理任务,从而提升了算法的执行能力和可扩展性.利用手机运营商提供的手机轨迹数据,分析城市人口流动情况,建立了多个模型,包括进出城市的人口流动行为分析模型、市内各区县间的人口流动行为分析模型、居民工作地/居住地人口分析模型.与传统方法相比,本方案的成本更低,效率更高,覆盖人群更广. Analysis on urban population flow can help to make rational distribution of social resources, cope with traffic pressure and maintain public order, etc. The traditional manual analysis methods, such as questionnaire and interview, can not deal with this task efficiently. The continuous development and prevalence of smart phones bring great convenience to people's daily life and users' trajectory data generated by the connection between smart phones and base stations, which makes it possible to implement this task. However, trajectory data is massive and has low quality, which brings great challenge to related work. We propose a distributed framework for population flow analysis by using multiple computing nodes, thus greatly enhancing efficiency and scalability. In this paper, we use the massive trajectory data to analyze the behavior of urban population flow. We model flowing behavior among cities and among inner-city districts, and decide the work place and living place of each person. Compared with the traditional methods, our method is cheaper and more efficient.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第5期162-171,共10页 Journal of East China Normal University(Natural Science)
基金 国家重点基础研究发展计划(973)(2012CB316203) 国家自然科学基金(61370101) 上海市教委科研创新重点项目(14ZZ045)
关键词 人口流动 轨迹数据 分布式框架 population flow trajectory data distributed framework
  • 相关文献

参考文献20

  • 1GONZALEZ M C,HIDALGO C A,BARABASI A L.Understanding individual human mobility patterns[J].Nature,2008,453(7196):779-782. 被引量:1
  • 2SONG C,QU Z,BLUMM N,et al.Limits of predictability in human mobility[J].Science,2010,327(5968):1018-1021. 被引量:1
  • 3SONG C,KOREN T,WANG P,et al.Modelling the scaling properties of human mobility[J].Nature Physics,2010,6(10):818-823. 被引量:1
  • 4LI Z,DING B,HAN J,et al.Mining periodic behaviors for moving objects[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2010:1099-1108. 被引量:1
  • 5陈佳,胡波,左小清,乐阳.利用手机定位数据的用户特征挖掘[J].武汉大学学报(信息科学版),2014,39(6):734-738. 被引量:24
  • 6ASHBROOK D,STARNER T.Using GPS to learn significant locations and predict movement across multiple users[J].Personal and Ubiquitous Computing,2003,7(5):275-286. 被引量:1
  • 7WHITE J,WELLS I.Extracting origin destination information from mobile phone data[C]//11th International Conference on Road Transport Information and Control,2002:30-34. 被引量:1
  • 8CACERES N,WIDEBERG J P,BENITEZ F G.Deriving origin destination data from a mobile phone network[J].Intelligent Transport Systems,IET,2007,1(1):15-26. 被引量:1
  • 9IQBAL M S,CHOUDHURY C F,WANG P,et al.Development of origin-destination matrices using mobile phone call data[J].Transportation Research Part C Emerging Technologies,2014,40(1):63-74. 被引量:1
  • 10LIU F,JANSSENS D,CUI J X,et al.Building a validation measure for activity-based transportation models based on mobile phone data[J].Expert Systems with Applications,2014,41(14):6174-6189. 被引量:1

二级参考文献15

  • 1朱丽莉,王金华.手机定位服务系统的研究[J].华东理工大学学报(自然科学版),2007,33(B06):21-23. 被引量:5
  • 2Ashbrook D, Starner T. Using GPS to Learn Sig nificant Locations and Predict Movement Across Multiple Users[J]. Personal and Ubiquitous Com- puting,2003, 7(5): 275-286. 被引量:1
  • 3Song C, Qu Z, Blumm N, et al. Limits of Predicta- bility in Human Mobility[J]. Science, 2010, 327 (5 968): 1 018-1 021. 被引量:1
  • 4Song C, Koren T, Wang P, et al. Modelling the Scaling Properties of Human Mobility[J]. Nature Physics,2010, 6(10): 818-823. 被引量:1
  • 5Ahas R, Silm S, Jorv O, et al. Using Mobile Posi tioning Data to Model Locations Meaningful to Us- ers of Mobile Phones[J]. Journal of Urban Tech- nology,2010, 17(1): 3-27. 被引量:1
  • 6Lian Defu, Xie Xing. Learning Location Naming from User Check-In Histories[C]. The 19th ACM SIGSPATIAI. International Conference on Advances in Geographic Information Systems, ACM GIS 2011 ,Chicago,USA,2011. 被引量:1
  • 7Arase Y, Xie Xing, Hara T,et al. Mining People's Trips from Large Scale Geo tagged Photos[C]. The 18th ACM International Conference on Multimedia 2010, Firenze, Italy, 2010. 被引量:1
  • 8Wakamiya S, Lee R, Sumiya K. Crowd-based Ur- ban Characterization: Extracting Crowd Behavioral Patterns in Urban Areas from Twitter[C]. The 3rd ACM SIGSPATIAL International Workshop on I.o- cation-based Social Networks, Chicago, Illinois, USA, 2011. 被引量:1
  • 9Trevisani E, Vitaletti A. Cell-ID Location Tech nique, Limits and Benefits: An Experimental Study[C]. The 6th IEEE Workshop on Mobile Compu ting Systems and Applications, Windermere, Cure bria, UK, 2004. 被引量:1
  • 10Ester M, Kriegel H P, Sander J, et al. A Density- Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]. The 2nd Interna- tional Conference on Knowledge Discovery and Data Mining, Portland, Oregon, 1996. 被引量:1

共引文献24

同被引文献166

引证文献15

二级引证文献168

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部