期刊文献+

基于RNA-seq的能源植物芒转录组分析 被引量:12

Transcriptome analysis of bioenergy plant Miscanthus sinensis Anderss by RNA-Seq
原文传递
导出
摘要 芒(Miscanthus sinensis Anderss)是多年生C4草本植物,可为能量和纤维素产品生产提供高品质的木质纤维素材料,是一种理想的能源植物。采用Illumina Hi Seq?2000高通量测序技术,对芒花芽和叶芽进行转录组分析。经拼接组装共获得98 326个Unigene,序列平均长度822 bp,N50为1 337 bp。将Unigene序列与NR、NT、Swiss-Prot、KEGG、GO和COG数据库进行比对(Evalue<1e-5),共有74 134条Unigene获得了基因注释,占总Unigene的75.40%。其中,通过GO功能分类,45 507个Unigene映射到GO不同的功能节点上;通过KEGG pathways分析,共有36 710个Unigene参与了128个代谢通路;比对到同源序列比例最高的物种分别为高粱(37 731,60.86%)、玉米(16 258,26.22%)、水稻(3 065,4.94%),共占所有同源序列的92.02%。此外,获得了芒C4关键酶相关基因24个。这些注释信息的完成为芒功能基因及相关候选基因的发掘提供了重要依据。 Miscanthus sinensis Anderss is a perennial C4-grass. It is a promising bioenergy plant, which has been proposed as general feedstock for biomass and lignocellulosic biofuel production. In this study, the flower and leaf buds transcriptomes of Miscanthus sinensis Anderss were sequenced by the platform of Illumina Hi Seq^tm 2000. In total 98 326 Unigenes were generated by de novo assembly with an average length of 822 bp and N50 of 1 023 bp. Based on the NR, NT, Swiss-Prot, KEGG, GO and COG databases(Evalue1e-5), 74 134(75.40%) Unigenes were annotated. A total of 45 507 Unigenes were mapped into different GO terms. In KEGG pathways identification, 36 710 sequences were assigned to 128 KEGG pathways. Sorghum bicolor(37 731, 60.86%), Zea mays(16 258, 26.22%), and Oryza sativa(3 065, 4.94%) showed high similarity to Miscanthus sinensis Anderss. And 24 photosynthesis-related enzyme genes were identified. The result provides a foundation for further characterizing the functional genes in Miscanthus sinensis Anderss.
出处 《生物工程学报》 CAS CSCD 北大核心 2015年第10期1437-1448,共12页 Chinese Journal of Biotechnology
基金 公益性行业(农业)科研专项(No.201103005) 浙江省自然科学基金(No.LY14D010004)资助~~
关键词 转录组 RNA-SEQ 基因注释 Miscanthus sinensis Anderss transcriptome RNA-seq gene annotation
  • 相关文献

参考文献25

  • 1Lewandowski 1, Clifton-Brown JC, Scurlock JMO, et al. Miscanthus: European experience with a novel energy crop. Biomass Bioenergy, 2000, 19(4): 209-227. 被引量:1
  • 2Vermerris W. Genetic Improvement of Bioenergy Crops. New York: Springer, 2008: 274-290. 被引量:1
  • 3Yan J, Chen W, Luo F, et al. Variability and adaptability of Miscanthus species evaluated for energy crop domestication. GCB Bioenergy, 2012,4(1): 49-60. 被引量:1
  • 4Somerville C, Youngs H, Taylor C, et al. Feedstocks for lignocellulosic biofuels. Science, 2010, 329(5993): 790-792. 被引量:1
  • 5Jones MB, Mary W. Miscanthus for Energy and Fiber. London: James & James (Science Publishers), 2001: 1-10. 被引量:1
  • 6Heaton EA, Dohleman FG, Long SP. Meeting US biofuel goals with less land: the potential of Miscanthus. GCB Bioenergy, 2008, 14: 2000-2014. 被引量:1
  • 7Naidu SL, Moose SP, AL-Shoaibi AK, et al. Cold Tolerance of C4 photosynthesis in Miscanthusx giganteus: adaptation in amounts and sequence of Ca photosynthetic enzymes. Plant Physiol, 2003, 132(3): 1688-1697. 被引量:1
  • 8Heaton EA, Long SP, Voigt TB, et al. Miscanthus for renewable energy generation: European union experience and projections for Illinois. Mitig Adapt Strategy Glob Chang, 2004, 9(4): 433-451. 被引量:1
  • 9Vermerris W. Genetic Improvement of Bioenergy Crops. New York: Springer, 2008: 287. 被引量:1
  • 10Glowacka K. A review of the genetic study of the energy crop Miscanthus. Biomass Bioenergy, 2011, 35(7): 2445-2454. 被引量:1

二级参考文献4

共引文献59

同被引文献174

引证文献12

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部