期刊文献+

考虑相关因素统一修正的节假日负荷预测模型 被引量:7

Holiday Load Forecasting Model Considering Related Factor with Unified Correction
原文传递
导出
摘要 能源互联网正在逐步影响电网的规划建设方式,其对于相关的负荷预测技术也提出了更高的要求。节假日负荷预测由于存在与正常工作日差异较大且历史数据较少的原因,其负荷预测的效果往往不理想。通过相关因素统一修正模型对气象、时间等相关因素进行修正处理之后,得到统一相关因素影响下的正常工作日数据。考虑"近大远小"的原则,对于正常工作日和节假日负荷曲线之间的相关性进行分析,并基于点对点倍比预测模型提出节假日负荷预测模型,该模型能够自动削弱历史中不正常数据对于预测精度的影响。将提出的预测方法应用于我国北方某城市和某地区的节假日负荷预测,算例分析结果显示预测精度能够满足实际需要,可以为相关电力部门节假日负荷预测提供一定的参考价值。 The energy internet is gradually impacting the planning and construction way of power grid,which puts harder request on the prediction technology of related factors. Due to the huge differences between holidays and weekdays and the lack of historic data,the results of load prediction for holidays are not so good. Weather,date and other related factors were corrected by the unified correction model of related factor,and then the data for normal weekdays impacted by unified related factors was obtained. Considering the principle of ‘emphasizing the near and belittling the long ',the relevance of load curves between normal weekdays and holidays was analyzed,and the load forecasting model was proposed based on the point-to-point analogy,which could reduce the prediction error caused by the abnormal historic data automatically. The proposed prediction method was applied to the holiday load forecasting in one of the northern cities and districts in China.The example analysis results showthat the prediction accuracy can satisfy the actual requirements,which can provide a certain reference value for the holiday load forecasting of related power sector.
出处 《电力建设》 北大核心 2015年第10期99-104,共6页 Electric Power Construction
基金 国家电网公司科技项目(SGHB0000KXJS1400044 新形势下电力需求及售电市场分析预测技术研究)
关键词 负荷预测 节假日 相关因素 点对点倍比 load forecasting holiday related factor point-to-point analogy
  • 相关文献

参考文献20

  • 1雷绍兰..基于电力负荷时间序列混沌特性的短期负荷预测方法研究[D].重庆大学,2005:
  • 2Paparoditis E, Sapatinas T.Short-term load forecasting: the similar shape functional time-series predictor[J].IEEE Transactions on Power Systems, 2013, 28(4): 3818-3825. 被引量:1
  • 3任明明..基于频域分解的短期负荷预测研究[D].新疆大学,2013:
  • 4Ghelardoni L, Ghio A, Anguita D.Energy load forecasting using empirical mode decomposition and support vector regression[J].IEEE Transactions on Smart Grid, 2013, 4(1): 549-556. 被引量:1
  • 5邰能灵,侯志俭,李涛,蒋传文,宋炯.基于小波分析的电力系统短期负荷预测方法[J].中国电机工程学报,2003,23(1):45-50. 被引量:147
  • 6Pandey A S, Singh D, Sinha S K.Intelligent hybrid wavelet models for short-term load forecasting[J].IEEE Transactions on Power Systems, 2010, 25(3): 1266-1273. 被引量:1
  • 7杨正瓴,王渭巍,曹东波,张军,陈曦.短期负荷预测的Ensemble混沌预测方法[J].电力系统自动化,2007,31(23):34-37. 被引量:14
  • 8Willis H L, Northcote-Green J E D.Spatial electric load forecasting: a tutorial review[J].Proceedings of the IEEE, 1983, 71(2): 232-253. 被引量:1
  • 9雷绍兰,孙才新,周湶,张晓星,程其云.基于径向基神经网络和自适应神经模糊系统的电力短期负荷预测方法[J].中国电机工程学报,2005,25(22):78-82. 被引量:71
  • 10Amjady N, Keynia F, Zareipour H.Short-term load forecast of microgrids by a new bilevel prediction strategy[J].IEEE Transactions on Smart Grid, 2010, 1(3): 286-294. 被引量:1

二级参考文献113

共引文献403

同被引文献85

引证文献7

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部