期刊文献+

基于图像目标特征空间自学习分类算法 被引量:2

Self learning classification algorithm based on image object feature space
下载PDF
导出
摘要 为解决图像分类过程中特征点选择的随机性对分类精度造成的影响,提出一种基于图像目标特征空间自学习分类算法。利用基于颜色和纹理特征的多通道局部主动轮廊模型找到图像的目标区域,在目标区域选取特征并对特征稀疏编码建立图像的目标特征空间。为进一步提高图像分类精度建立投票机制下基于图像目标特征空间的自学习算法。实验结果表明,该方法能避免特征选择的随机性对实验结果的影响,有效地提高图像分类的精度。 In the image classification process, the classification accuracy is affected by the randomicity of feature point selec-tion. In order to solve this problem, a self-learning classification algorithm based on image object feature space is pro-posed. The image target area is found with the local multi-channel active contour model based on the colour and texture feature. Features are selected in the target area and it makes sparse coding on features, which is used to establish the fea-ture space. In order to further improve the classification accuracy, a voting mechanism is established on the proposed algo-rithm. Experimental results indicate that the proposed algorithm can avoid the impact of the randomicity of feature point selection, and effectively improve the accuracy of image classification.
作者 贾广象 陈莹
出处 《计算机工程与应用》 CSCD 北大核心 2015年第20期153-156,182,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61104213) 江苏省自然科学基金(No.BK2011146)
关键词 加速稳健特征(SURF) 图像分割 图像分类 自学习 主动轮廊模型 Speeded Up ROBUST Features(SURF) image segmentation image classification self learning active con-tour model
  • 相关文献

参考文献14

  • 1Li Feifei.Learning generative visual models from few training examples:an incremental Bayesian approach test on 101 object categories[C]//IEEE CVPR Workshop on Generative-Model Based Vision,2007:1063-1069. 被引量:1
  • 2Seeger M.Learning with labeled and unlabeled data[R].[S.l.]:Institute for Adaptive and Neural Computation,University of Edinburgh,2001. 被引量:1
  • 3Nishii R,Eguchi S.Supervised image classification by contextual adaboost based on posteriors in neighborhoods[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43:2547-2554. 被引量:1
  • 4Thrun S.Is learning the n-th thing any easier than learning the first?[C]//Advances in Neural Information Processing System.Cambridge,MA:MIT Press,1996:640-646. 被引量:1
  • 5Rania R.Self-taught learning:transfer learning from unlabeled data[C]//ICML’07,Corvallis,Oregon,USA,2007:759-766. 被引量:1
  • 6Lowe D G.Distinctive image features from scale-invariant keypoints[J].Journal of Computer Vision,2004,60(2):91-110. 被引量:1
  • 7刘扬,程健.基于目标局部特征的迁移学习[C]//第十四届全国图像图形学术会议,2008:343-346. 被引量:1
  • 8米晓莉,贾世杰,刘文一.基于颜色与纹理特征的局部主动轮廓模型[J].计算机工程,2012,38(9):211-213. 被引量:2
  • 9Lee H,Battle C,Rania R.Efficient sparse coding algorithms[C]//ICML’07,Corvallis,Oregon,USA,2007:801-808. 被引量:1
  • 10Lankton S.Localizing region-based active contours[J].IEEE Transactions on Image Procession,2008,17(11):2029-2039. 被引量:1

二级参考文献21

共引文献7

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部