摘要
It is extensively approved that Channel State Information(CSI) plays an important role for synergetic transmission and interference management. However, pilot overhead to obtain CSI with enough precision is a significant issue for wireless communication networks with massive antennas and ultra-dense cell. This paper proposes a learning- based channel model, which can estimate, refine, and manage CSI for a synergetic transmission system. It decomposes the channel impulse response into multiple paths, and uses a learning-based algorithm to estimate paths' parameters without notable degradation caused by sparse pilots. Both indoor measurement and outdoor measurement are conducted to verify the feasibility of the proposed channel model preliminarily.
It is extensively approved that Channel State Information(CSI) plays an important role for synergetic transmission and interference management. However, pilot overhead to obtain CSI with enough precision is a significant issue for wireless communication networks with massive antennas and ultra-dense cell. This paper proposes a learning- based channel model, which can estimate, refine, and manage CSI for a synergetic transmission system. It decomposes the channel impulse response into multiple paths, and uses a learning-based algorithm to estimate paths' parameters without notable degradation caused by sparse pilots. Both indoor measurement and outdoor measurement are conducted to verify the feasibility of the proposed channel model preliminarily.
基金
supported by National Basic Research Program of China (NO 2012CB316002)
China’s 863 Project (NO 2014AA01A703)
National Major Projec (NO. 2014ZX03003002-002)
Program for New Century Excellent Talents in University (NCET-13-0321)
Tsinghua University Initiative Scientific Research Program (2011THZ02-2)