期刊文献+

具有Beddington-DeAngelis功能反应的疟疾模型的稳定性分析 被引量:3

Stability Analysis of a Mathematical Model on Malaria with Beddington-DeAngelis Functional Response
下载PDF
导出
摘要 建立了一个在红细胞内期具有Beddington-DeAngelis功能反应的疟疾传播数学模型.利用下一代矩阵得到基本再生数R0,并通过构造Lyapunov函数,证明了当R0≤1时,该模型无病平衡点全局渐近稳定;当R0>1时,正平衡点全局渐近稳定. In this paper,a malaria dynamic model with Beddington-DeAngelis functional response is proposed.With the next-generation matrix method,the basic reproduction number R0 is obtained.By constructing Lyapunov functions,it is shown that the infection-free equilibrium is globally asymptotically stable when R0≤1and the positive equilibrium is globally asymptotically stable when R01.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第9期94-99,共6页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金项目(11171276)
关键词 Beddington-DeAngelis功能反应 LYAPUNOV函数 全局稳定性 Beddington-DeAngelis functional response Lyapunov function global stability
  • 相关文献

参考文献8

  • 1GRAVENOR M B, MCLEAN A R, KWIATKOWSKI D. The Regulation of Malaria Parasitaemia: Parameter Estimatesfor a Population Model [J]. Parasitology, 1995,110(2) : 115 - 122. 被引量:1
  • 2HETZEL C,ANDERSON R M. The Within-Host Cellular Dynamics of Bloodstage Malaria: Theoretical and Experimen-tal Studies [J]. Parasitology,1996,113(1) : 25 - 38. 被引量:1
  • 3XIAO Y, ZOU X. Can Multiple Malaria Species Co-Persist [J], SIAM Journal on Applied Mathematics,2013,73(1):351 - 373. 被引量:1
  • 4BEDDINGTON J. Mutual Interference Between Parasites or Predators and Its Effect on Searching Efficiency [J]. Journalof Animal Ecology, 1975,44(1) : 331 - 340. 被引量:1
  • 5DEANGELIS D, GOLDSTEIN R,ONEILL R. Model for Trophic Interaction [J]. Ecology, 1975,56(4) : 881 - 892. 被引量:1
  • 6DIEKMANN O,HEESTERBEEK J,METZ J. On the Definition and the Computation of the Basic Reproduction RatioR0 in Models for Infectious Diseases in Heterogeneous Populations [J]. Journal of Mathematical Biology. 1990, 28(4):365-382. 被引量:1
  • 7VAN DEN DRIESSCHE P,WATMOUGH J. Reproduction Numbers and Sub-Threshold Endemic Equilibria for Com-partmental Models of Disease Transmission [J]. Mathematical Biosciences, 2002,180: 29 - 48. 被引量:1
  • 8HALE J, LUNEL S. Introduction to Functional Differential Equations [M], New York: SpringerVerlag, 1993: 130-166. 被引量:1

同被引文献8

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部