期刊文献+

基于用户聚类的推荐算法 被引量:3

RECOMMENDATION BASED ON USER INTEREST CLUSTERING
下载PDF
导出
摘要 由于社交网络中人物与内容之间错综复杂的关系,如何合理地给用户推荐感兴趣的内容具有十分重要的意义。提出CCVR(Core user for Clustering interesting Vector for Recommend)算法。基于用户的兴趣矩阵,运用改进的K-means算法进行聚类从而推导类兴趣向量,由此预测用户对哪些内容标签感兴趣,从而形成推荐。实验结果证明CCVR算法具有良好的准确性。 How to recommend the interested contents to users reasonably is of great importance because in social networks the relationships between people and content are complicated.We proposed the CCVR (core user for clustering interesting vector for recommend)algorithm. Based on user's matrix of interest,we used an improved k-means algorithm for clustering and derived the interests vector of class,thus predic-ted what tags of content the users would be interested,so as to achieve the recommendation.Experimental results proved that the CCVR algo-rithm had good accuracy.
出处 《计算机应用与软件》 CSCD 2015年第10期269-272,共4页 Computer Applications and Software
基金 湖北省教育厅科研基金项目(B20101104) 湖北省重点实验室开放基金项目(znss2013B012) 武汉科技大学科研基金项目(2009xz1) 武汉科技大学大学生科技创新基金研究项目(12ZRC061)
关键词 推荐算法 聚类 兴趣度 Recommendation algorithm Clustering Interestingness
  • 相关文献

参考文献11

二级参考文献121

  • 1高琰,谷士文,唐琎.基于链接分析的Web社区发现技术的研究[J].计算机应用研究,2006,23(7):183-185. 被引量:17
  • 2YEONG C,YOON C, SOUNG K. Mining changes in customer buying behaviour for collaborative recommendations [ J ]. Expert Systems with Applications,2004,28 ( 2 ) : 359- 369. 被引量:1
  • 3PANAGIOTIS S, ALEXANDROS N, APSTOLOS N,et al. Collaborative recommender system: combing effectiveness and efficiency [ J ]. Expert Systems with Applications,2007,34(4) :2995-3013. 被引量:1
  • 4WENG Sung-shun, LIN Bin-shan, CHEN Wen-tien. Using contextual information and multidimensional approach for recommendation [J]. Expert Systems with Applications,2009,36(2) :1268-1279. 被引量:1
  • 5LEUNG C W, CHAN S C, CHUNG F,et al. An empirical study of a cross-level association rule mining approach to cold-start recommendations[ J]. Knowledge-based Systems,2008,21 (7) :515-529. 被引量:1
  • 6LI Yu, LIU Lu, LI Xue-feng. A hybrid collaborative filtering method for multiple-interests and multiple-content recommendation in e-commerce [ J ]. Expert Systems with Applications, 2005,28 ( 1 ) : 67- 77. 被引量:1
  • 7HUANG Cheng-lung, HUANG Wei-liang. Handing sequential pattern decay : developing a two-stage collaborative recommender system [ J ]. Eletronic Commerce Research and Applications, 2008,8 ( 3 ) : 117-129. 被引量:1
  • 8LUIS M,JUAN M,JUAN F. A collaborative recommender system base on probabilistic inference from fuzzy observations[ J]. Fuzzy Sot and Systems,2008,159 ( 12 ) : 1554-1576. 被引量:1
  • 9HUANG Zan,ZENG D, CHEN H C. A comparison of collaborative-filtering recommendation algorithms for e-commerce[ J]. IEEE Intelligent Systems, 2007,22 (5) :68- 78. 被引量:1
  • 10SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms [ C ]//Proc of the 10th International Conference on World Wide Web. New York: ACM Press, 2001 : 1-5. 被引量:1

共引文献327

同被引文献17

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部