期刊文献+

韭菜中毒死蜱残留量与高光谱特征参数的相关性建模 被引量:2

Sensitivity model for chlorpyrifos residues in chinese chive and hyper-spectral absorption parameters
下载PDF
导出
摘要 本研究目的在于分析农药残留量(pesticide residue,PR)与高光谱中响应特征参数之间的关系,并利用筛选的光谱特征参数建立反演毒死蜱残留量的有效模型。首先采用ASD Fieldspec高光谱仪测得韭菜样本的光谱,通过气相色谱-质谱联用(GC-MS)法测得毒死蜱残留量(PR)值;分析样本光谱反射率值及其一阶微分值与毒死蜱残留量的相关性,计算33个高光谱特征参数与毒死蜱残留量的相关性;根据相关系数高低选择敏感的光谱特征参数;最后采用最佳相关系数下的光谱特征参数对毒死蜱残留量进行建模反演。相关性分析结果显示:近红外波段789~867 nm范围内一阶微分光谱值与PR值呈正相关,1 860 nm处一阶微分光谱值(first-order differential 1 860 nm,FD1860)与PR值紧密相关;在33个高光谱特征参数中,近红外一阶微分总和(the sum of first-order differential near infrared,SDnir)与PR值呈良好的正相关关系。基于此,文章以供试样本的FD1860和SDnir观测值为自变量,分别建立了3个预测毒死蜱残留量的模型,即线性、二次多项式及指数模型,并采用交叉验证测试方法检验了模型的合理性。对实验所得决定系数R2和预测均方根误差(RMSE)的评价结果表明,以SDnir为自变量构建的模型稳定性强,其二次多项式模型是最佳反演毒死蜱残留量的有效模型。因此,样本的高光谱特征参数SDnir的变化幅度直接反映了韭菜样本中毒死蜱残留量的变化,表明运用蔬菜的高光谱特征参数反演蔬菜中农药残留量的方法是可行的。 This study aimed at validating the relationship between pesticide residue (PR) and hyperspectral absorption parameters, and used the selected hyperspectral absorption parameters to build an effective model to predict the chlorpyrifos residue levels in vegetatble samples. Firstly, reflectance spectral data for different chlorpyrifos pesticide concentration on Chinese chive samples were collected, then the correlation between reflectance's first-order differential value and the amount of pesticide residues (measured by GC-MS ) were calculated, where 33 different kind hyperspectral absorption parameters were calculated and the correlation coefficients with the pesticide residue were also computed. The results revealed that the directly spectral reflectance and first-order differential value's correlation coefficients were low, except for near infrared bands between 789 - 867 nm and 1 860 nm. Among the 33 hyperspectral absorption parameters, the sum of first-order differential near infrared (SDnir) was chosen as a key factor. Finally, the pesticide concentration fits with first-order differential value's 1 860 nm( FD1860) and SDnir by linear, polynomial and exponential function. Then cross validation experiments were carried out to verify the reliability of the models. The final experiments showed that the SDnir quadratic polynomial model got the highest coefficient of determination R2and lower RMSE. It is suggested that the hyperspectral absorption parameters could be a good indicator for pesticide residues on vegetable samples. The changes of SDnir directly reflect to the changes of pesticide residues. The experimental results show that it is feasible to use vegetable hyperspectral absorption parameters for predicting pesticide residues.
出处 《农药学学报》 CAS CSCD 北大核心 2015年第5期563-570,共8页 Chinese Journal of Pesticide Science
基金 对地观测技术国家测绘局重点实验室开放课题(K201304) 陕西省教育厅科研计划项目(2013JK0946) 西安科技大学博士启动金项目(2012QDJ041)
关键词 农药残留 高光谱特征参数 模型 相关系数 气相色谱-质谱联用 毒死蜱 韭菜 pesticide residue hyperspectral absorption parameters model correlation coefficient gaschromatography-tandem mass spectrometry ( GC-MS ) chlorpyrifos Chinese chive
  • 相关文献

参考文献25

二级参考文献137

共引文献224

同被引文献7

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部